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This dissertation studies the effects of the “key-value-ref”” model in the computational
field simulation software development process. The motivation of this study is rooted in
addressing the high cost of designing and implementing high-performance simulation soft-
ware that runs on modern parallel supercomputers. Unlike traditional sequential program-
ming where a number of effective tools exist, parallel super-cluster programming contains
many low-level constructs that increase the complexity in the implementation of a software
design. More importantly, the dynamic nature of the simulation problems brings additional
challenges into the designing stage. Often a designer has to face a number of competing
factors and needs to devise strategies to make a trade-off and to find better software struc-
tures that can be realized with reasonable performance and flexibility. Proper modeling
can help to address many of these issues in the design and implementation stages. Using
a two-phase Lagrangian particle-field simulation problem as a case study, this dissertation

shows that the “key-space” concept developed in the “key-value-ref” model within this
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dissertation is able to model the essential components in available design approaches for
parallel computational field simulation, and that the model also helps to expose the design
choices in a more sensible way, and also offers certain guidance towards the crafting of a
better software structure. In addition, a programming interface is also designed and imple-
mented that allows the development of computational field simulation software utilizing
the “key-space” concept. Empirical results show that the current implementation provides

a reasonable performance compared to those highly optimized hand-tuned programs.
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CHAPTER 1

INTRODUCTION

Large scale software are often identified as the most complex human constructs. Not
surprisingly their development is not easy. The classic software engineering article “No
Silver Bullet (NSB)” [10] categorizes software difficulties into essence and accidents. In
such a view, the essence of a software entity is its conceptual construction that is invariant
under different representations. While the accidents are those difficulties arise from the
particular approach chosen to realize the abstract design. The central argument of the
“NSB” article is that software essence makes a large part in the software difficulties and is
inherent and irreducible.

“NSB” has had profound influence over the software community, whether one agrees
with its judgement or not. While the theme of this dissertation is not to argue the funda-
mental points in “NSB,” in fact, I have largely agreed with Brooks’ assessment, instead
this dissertation tries to examine the effectiveness of an abstract model to attack the es-
sential and accidental complexity for a limited domain in software construction. Perhaps
the most memorable part in “NSB” is this summary: “that physical laws are designed
by God, hence they are inherently simple and elegant; and that software are designed by
different people, thus they are inherently complicated.” This underlines the importance

and elegance of proper modeling and abstraction, which is the central theme in theoretical
1
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physics and mathematics. What is so difficult in modeling software essence is that it is
essential and diverse, thus it is hard to unify and simplify. “NSB” argues that abstracting
away software complexity often abstracts away its essence, making the abstraction largely
irrelevant. However modeling does address essence, as acknowledged in the follow up
article “NSB refired” [11]. Proper modeling will help crafting and debugging concepts,
which is the essential part in software construction.

This dissertation investigates the utility of the “key-value-ref” model in computational
field simulation (CFS) software development. By limiting the scope to a rather narrow
domain, it is hoped that such a model would be able to help reveal the inherent relation-
ships among the interlocking concepts in CFS software. The intention is not to claim
that such a model is a silver bullet, even in the CFS software domain. Rather developing
and enriching the model in this dissertation is to try to make an incremental step towards
attacking the CFS software essence, if that is ever possible. Constructively, this disser-
tation shows that the developments described throughout this thesis help to simplify the
understanding and identification of the essential parts in CFS software design, provides a
more unified view to the cost trade-offs involved (particularly for CFS problems that ex-
hibit certain dynamism), and also offers guidance towards the crafting of a good design.
The associated implementation of the model also helps to remove large part of the acci-
dental complexity in realizing CFS on modern high-performance platforms. Surprisingly,
despite the myriads of computational tools available to the CFS community, not many
address such accidental complexity on a fundamental level. Combining these efforts and

developments, it is hoped that the overall productivity for crafting good CFS software will

2
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be greatly improved. The results may not deliver the magic of a silver bullet that even kills
the monsters in the CFS space. But it is perhaps a brass one, if used wisely, it certainly has
the capability to transform them back to their humanoid form.

The “key-value-ref” model investigated in this dissertation is not a brand new devel-
opment. In a simpler yet more general form, it has existed as the relational model in
relational database theory [23] for a long time. However its application and utility in
the high-performance computing (HPC) community has largely not been examined yet.
There are only a few previous efforts that consider the relational model in HPC. The most
notable example is the Cornell sparse matrix compiler [58] that utilizes the model to syn-
thesize efficient sparse matrix code for a large collection of storage formats. In this case,
the model is mostly used to alleviate the accidental complexities in an even smaller do-
main of well established applications. The work presented here is built on top of the Loci
framework [53, 57] (and more importantly its concepts), which is the only work to my
knowledge that considers the relational model and enriches (and constrains) it to suit CFS
software development. In addition to addressing much of the accidental complexity in the
CFES software domain on modern distributed memory architecture, the model created by
the Loci framework has great hopes to help address the question how to better structure
CFS software, which is an essential step in the design process.

Simply put, the “key-value-ref” model is a view about the relationships of the funda-
mental objects involved in a problem. In its view, there are only two kinds of attributes
attached to an object (a “key”): a “value” field that associates various properties to an ob-

ject, and a “ref” field that lets an object refer to other objects. Through this model, many

3
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of the components in a CFS problem can be understood in a more simplified manner, yet
the essential dynamism among the interacting concepts is largely kept. Hence it has the
potential benefit to help craft good designs more productively. Moreover, the simplicity
and the connection to relational algebra allow the model to be implemented systematically
and has great performance potential. The resulting composability and parallellism obliv-
iousness from the applications developed by the model removes much of the accidental
complexity in software development. Although the accidents do not contribute to the fun-
damental software difficulties, any removal of that is certainly welcomed. In addition, the
reusability resulted from these properties promises another direction to address the essence
of CFS software design.

One cannot talk about a model without a concrete example. Throughout this disserta-
tion, I use the Lagrangian particle tracking problem as a case study to illustrate the various
concepts and developments, and also to provide a convincing case that the “key-value-ref”
model developed in the thesis will be helpful in attacking the complexities in building
such software. The Lagrangian particle tracking problem is a two-phase dispersed flow
problem, which is an important subclass of the more general multiphase flow (MPF) sim-
ulation [9, 21] problems. The general setup of the problem consists of discrete particles
moving in a continuum field under the influence of the field force, and that the particles
and fields also interact. The objective is to follow each individual particle and determine
their precise physics information.

There are in general two approaches to solve the problem on a parallel computer. The

first approach (termed as “cell-dec” method) decomposes the continuum field (typically

4
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modeled as discrete mesh [78]) to parallel processes. Particles are assigned to the mesh
cells that currently contain them. Tracking a particle amounts to transferring its ownership
to another mesh cell (potentially on a different parallel process). The difficulty in such a
design is that it is hard to manage the balance of computation on each parallel process. The
density of particles in the field is usually not uniform, hence, calculation on each cell is not
uniform in this design. An unsteady particle movement precludes an optimized partition
to parallel processes that balances the computational cost.

Another design is to decouple the particles from their containing mesh cells and also
partition them to parallel processes independently (termed as “dual-dec” method). This
frees the particles from being bonded to the field geometry and in turn, balanced com-
putation is easily achieved as an optimized partition can be predetermined. The major
challenge in this design is that such an optimized data partition on both the mesh and
particles may destroy much of the localization of field-particle interaction thereby increas-
ing the frequency and the volume of data exchange during the interaction, resulting in an
increased parallel overhead also.

Such design difficulties are prevalent in multi-component computation problems of a
dynamic nature because they represent an inherent conflict in the balance of computation
and interaction among the many entities and their relations involved. Unfortunately no
known algorithms and design approaches can seem to eliminate such an intrinsic difficulty
on modern computing architectures. What we can do instead is to devise methods to
counteract and reduce the conflict and imbalance presented in these problems, while also
keeping the cost of these additional efforts small.

5
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We can look at the same problem under the “key-value-ref” model. Under the present
Loci incarnation of the model, keys are those objects that can be enumerated in a com-
putation. For example, we can enumerate discretized space while a physics attribute such
as pressure is usually not enumerable. Therefore keys are often those objects that have
“shape” in a computation, e.g., the geometry part. Thus both the mesh cells and particles
can be keys. However there is usually no restrictions to become value of a key. Therefore
they both can be values also. This would yield three combinations': mesh cell as key with
particle as value, both cell and particle as keys, and particle as key with cells as value.
Note they cannot all be values, otherwise, no object would be initiating the computation.
The first two formulations correspond to the cell-dec and the dual-dec design respectively.
The third design, while feasible, is generally not used. Being keys, the cells usually have
many “refs,” and being values means that they will lose these refs since only keys can have
refs. Converting all these refs through the means of value computation on the particle keys
is a complex process. However no one has even discussed this approach in the literature.

Either it is obviously impossible, or that no one has ever thought about it.

'In fact, with this model view, there are actually more possibilities than just these three. For example,
since there will be many particles in the field, then part of them can become keys and part of them can
become the value associated with cells. This would yield a hybrid design approach that has great potential.
This approach has also not yet been explored in the literature.
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Regardless, the “key-value-ref”” model captures the essence? of the Lagrangian particle
tracking problem and indeed offers more approaches. The designing of the cell-dec and
the dual-dec methods is coupled with the consideration of parallelization strategies. While
the model based design rests solely on the conceptual level, yet the performance trade-off
is preserved. What such a model can do to help the software development beyond solution
formulation? Firstly in practical engineering applications, it is the cell-dec method that is
widely used, the dual-dec design has largely been ignored for complex unstructured mesh
applications. Certainly the idea of dual-dec is not new. It is likely that the unpopularity
of the dual-dec design is due to the large accidental difficulties in realizing this approach.
Developers in the CFS community usually have quality parallel fluid flow solvers already
implemented with a well developed data decomposition methodology for the field mesh.
The particle tracking capability is usually added at a later stage. In such cases, the effort
required to develop another approach with completely different strategy would be signif-
icantly greater than to reuse the existing infrastructure. The other possibility is due to
belief that the performance of the dual-dec solution will be inferior to the cell-dec solution
approach due to its extensive use of parallel communication. This may indeed be true.

However without proper evaluation, one cannot be certain that it is true for all cases.

2One can argue that the formulation of these solutions is on the accidental level and not the essential part
as these formulations of solutions evidently tie in the influence of implementation idioms on modern parallel
computing architectures. However as Martin Flower argues in the latest reload of “NSB” [29]: that the
essential/accidental separation has become fuzzier and in some cases, the accidental difficulties increasingly
appear as the essence as some form of representation is needed to think of the essence of a problem. This
is indeed appropriate. There shall be levels of such a separation of essence/accidents in different domains.
For example, one can argue that the realization of a solution on the von Neumann architecture is a form of
accidents. Yet most software are built on such an architecture, the accidents could then become the essence
as most algorithms are designed for such a platform, whether specifically or implicitly.
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Thus one of the utilities of the “key-value-ref” model is to offer a rapid prototyp-
ing capability for evaluation of further developments. A quality implementation of the
“key-value-ref” model maps a design expressed in its domain onto the current mainstream
platform with reasonable performance, allowing one to quickly evaluate the effectiveness
and possibility of a design. Such rapid prototyping practice is offered in the “NSB” article
as one of the promises to attack the conceptual essence.

There are indeed other numerous benefits of the model. However the one that I wanted
to focus on is the ability of the model to influence design choice and to provide guidance
for better software structuring. To some extent, each programming language and system
has such a goal: by using (or enforcing) a particular paradigm (such as Object-oriented
paradigm), the users of the tool can be influenced (or enforced) to use a particular design
approach that is likely to yield good solutions for certain problems. In the CFS domain,
there are not many systems that have such an intention. One of the major goal of this
dissertation is to enrich the “key-value-ref” model to incorporate such abilities. Put this
in the concrete example, once one decides to use the dual-dec approach, then how would
one be able to craft a more detailed design that has the potential to deliver the performance
(and not to mention the correctness)? In other words, there are certain complexities (and
some I believe are closer to the essence) involved in realizing this process. Merely offering
design choice is not enough, there should be some guidance and paradigms for detailing
and refining the design choice as well.

The “key-value-ref” model as its present form in the Loci framework does not have

such capability yet. First a full implementation for the model is not yet available. Although
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it has the potential to model dynamic applications like Lagrangian particle tracking or
other MPF problems, it cannot yet support the realization of the modeling on distributed
memory machines. Thus it remains as a conceptual tool. Second, to model all the options
properly and especially those design choices similar to the dual-dec design outlined before,
the “key-value-ref” model needs to be extended. Specifically, I extended the concept of
key further in this dissertation. In the new concept, a key is not only an enumerable
object in a computation, but also an object that can freely choose process affinity. On
top of this, the concept of “key-space” is proposed to help to address the modeling of the
full spectrum of solution formulations, and moreover also to provide patterns for better
software structuring. As a real case is critically important to understand various trade-offs
and conceptual ideas, I devote the entire chapter 4 in this dissertation to the study of the
Lagrangian particle tracking problem. Based on the lessons learned from the case study,
chapter 5 develops the key-space concept into the “key-value-ref” model and chapter 7
provides a matching implementation on distributed memory platform.

The development of the “key-value-ref” model itself and its implementation is a pro-
cess of software construction, and more importantly the crafting and reflecting of concepts
and ideas. Thus the “NSB” arguments would also apply to the activity of such develop-
ment if indeed the essence is to be addressed step by step. The developments of the ideas
and their realizations mirror the “NSB” insights closely. The previous Loci system repre-
sents the first major milestone, in which the more static CFS problems are understood and
tested. Indeed, after this many years of developments, we have made numerous small steps

along the way: the software framework itself witnessed incremental changes, performance
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has been steadily improved, the various design ideas were proposed, rejected, and more
importantly turned into lessons. This dissertation can be regarded as the next milestone
(at least I hope so) on the road that starts the process of attacking the difficulties in a more
dynamic CFS problem domain.

The major contributions of this dissertation can be summarized as the followings:

* Studies the “key-value-ref” model in the CFS problem domain, particularly those
problems that involve dynamic components, such as those multiphase flow simula-
tion problems.

* Provides a practical implementation and evaluation for the “dual-dec” Lagrangian
particle tracking approach and carefully compares it to the more popular “cell-dec”
approach. Although this work results from the case study, it represents an indepen-
dent contribution to the engineering community.

* Develops the key-space concept into the “key-value-ref” model and provides a prac-
tical implementation that is fully compatible with the present Loci framework, and
that when used to build applications, the key-space implementation can yield rea-
sonable performance compared to that of the manually tuned code.

10
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CHAPTER 2

LITERATURE SURVEY

This chapter surveys several parallel programming abstractions. Many parallel pro-
gramming languages and systems aim to only resolve the accidental complexity in parallel
software development by supporting easier resource management in a parallel environ-
ment. Indeed the “NSB” article argues that software tools can at best remove the accidents
while the essence is unlikely to be addressed. However these activities are still important.
Unlike the sequential software construction, the accidental complexity in parallel software
development remains to be a hard part and is not completely resolved by modern tools,
at least their success is not on the same level as modern sequential software tools. These
accidents can become a barrier for parallel software development. Tools that address them
are certainly improving the development productivity. The distinction between the essence
and the accidents also relates to how one considers what is the essential part in a problem
formulation. For example, in designing a parallel algorithm, the notion of multiple worker
is essential. Thus an implicit parallel language helps to reduce the essential complexity,
for it allows one to craft a mental design with fewer parameters. Of course, this does not
signify that an implicit parallel programming model resolves the software essence. Soft-
ware development in large is more than algorithm development. For example, the drafting

and debugging of requirements and specifications is likely to be beyond what a conven-
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tional programming model can address. Nevertheless, since dramatic improvements is not
likely, the best appears to be small steady advances, even in a narrowly defined domain.
In computer science, abstraction is a process to reduce and factor out details so that
complex problems can appear simpler and more natural to solve. One way that a pro-
gramming language can help to find the right abstraction is by providing a variety of ways
to organize data and computation. Another way is to make it possible to build program
components that capture meaningful patterns in computation [60]. Computer program-
ming is a vast area, the survey presented in this chapter is by no means complete. One of
the purposes to perform the survey is to summarize several characteristics that successful
programming systems exhibit. Because the model used by the Loci framework is unique
in the HPC area, and that it is closely related to the research presented in this dissertation,

I devote the entire chapter 3 to describe it in detail.

2.1 General Purpose Parallel Abstractions

Perhaps the most commonly used approach in parallel programming is to explicitly
program the parallelism and all low-level resource management by using a sequential lan-
guage (often FORTRAN or C) with a low-level parallel primitives library such as MPI [59]
on distributed memory platforms or Pthreads [13] on shared memory systems. This is per-
haps the most flexible style and can yield high performance for finely tuned code , yet it is
often considered tedious and error prone and is in fact the major reason to encourage the

development of the various higher level parallel programming abstractions.
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The High Performance FORTRAN (HPF) [40] and OpenMP [62] compilers provide
annotation based programming style for SPMD (Single Program Multiple Data) paral-
lelism. They offer a set of directives that programmers can use to suggest parallel loop
constructs, data alignment control, etc. The compiler is then able to generate the actual
parallel code based on these directives. HPF is presently fading from mainstream inter-
ests due to its lacking of a portable performance model. OpenMP mainly targets shared
memory platforms and lacks high-performance support on the more popular distributed
memory architectures.

Cilk [8, 41, 65] is a language for multi-threaded parallel programming based on C.
It was designed to be simple and efficient and was originated from theoretical studies of
thread scheduling. Although it is general purpose, it is particularly suited to dynamic
and highly asynchronous problems, such as Al problems like chess [22]. Programming
parallelism in Cilk generally consists of using keywords such as spawn and sync to ex-
pose and indicate the parallelism. The compiler and run-time system are responsible for
scheduling the computation on a given platform and take care of details like load bal-
ancing, paging, and communication. Internally Cilk uses the “work and depth” model to
estimate the parallel performance and its randomized work-stealing scheduler can guaran-
tee asymptotically optimal parallel running time. Though successful on shared memory
architecture, the “work and depth” model does not appear to fit well on a range of prac-
tical architectures including distributed memory machines as it neglects the interprocess

communication costs. Another problem is that if locks are used in a Cilk program, then
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the run-time system cannot guarantee anything. For some problems, designing a lock-free
algorithm can be challenging if not impossible.

In recent years, Java has gained mainstream interest in object-oriented programming
and becomes one of the dominant languages today. Its general focus is not on perfor-
mance, however its other features like safety and portability makes it suitable for software
development. Titanium [86] is an explicit parallel dialect of Java to support scientific com-
puting. It inherits all of Java’s safety, portability, usability, and expressiveness features.
However Titanium is compiled, therefore it has improved performance potential due to the
bypass of virtual machines. It incorporates several interesting features. Titanium provides
a shared memory abstraction and yet is portable across a range of architectures. However
performance tuning may be necessary on distributed memory platforms. Titanium also
utilizes static analysis techniques to prevent deadlock on barrier synchronization. It also
augmented the type system and utilizes type inference for pointer analysis. In the memory
management area, Titanium uses region-based memory management [32] in additional to
garbage collection. It also utilizes research results from high-performance communication
systems and provides built-in multidimensional arrays, points, rectangles, and general do-
main types. Several mesh simulation applications have been written in Titanium, including
adaptive mesh refinement applications.

Declarative languages such as functional programming has long been considered to
be natural and particularly suited for implicit parallel programming. Due to the refer-
ential transparency property, compilers are easier to analyze the program and discover
independent tasks. SISAL [15, 27] and NESL [6, 7] are two implicit data parallel func-
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tional languages designed to support scientific computing and have showed success to
some degrees. NESL takes the data parallelism further to be able to discover nested data
parallelism, thus made it suitable for implementing parallel nested loops and divide-and-
conquer algorithms. NESL also uses the “work and depth” performance model. Programs
developed in SISAL and NESL are simple and elegant, and parallelism are largely hidden
from the programmer. Reasoning about the program behavior is also easy. However they
both lack efficient support on the distributed memory platform, making them less useful
in addressing today’s needs.

The functional language Haskell [63] has generated many parallel and concurrent ex-
tensions [80] such as GpH [79], and distributed implementations GdH [64], and Eden [52].
In such extensions, Haskell is mainly used as the computation language, while the ex-
tended language constructs act as coordination languages to manage the parallelism. How-
ever such an approach generally do not qualify for a fully implicit parallel language as
the coordination languages usually include some forms of explicit concurrency control.
Unlike SISAL and NESL, these languages are not designed specifically for scientific com-
puting. Their applicability to high-performance computation is not certain due to the lack
of empirical examples.

Another direction in automatic implicit parallel programming is to develop paralleliz-
ing compiler techniques to extract the inherent parallelism automatically. The approach
could provide a low cost way to convert existing sequential programs to parallel codes that
can utilize multiple processing resources. Static program analysis is the most widely used
technique in parallelizing compilers. For example, the well known SUIF framework [37]
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uses scalar, array, and interprocedural analysis among others to locate coarse-grain par-
allelism in serial programs that are essential to utilize multiple processors effectively. A
drawback of static analysis is that it is not able to consider information only available
at run-time. In the other directions, compiler code optimization (parallelization) can be
based on information gathered at run-time [67, 72]. Recently techniques such as hybrid
analysis [69] is also proposed to combine the classic compile-time and run-time analysis
techniques. The major problem for parallelizing compiler technologies is that real world
programs may be much too complex for the most sophisticated compilers to analyze. Par-
allelizing compilers usually work well on small number of processors and may not scale
to large parallel system. Another problem is that they often only targeted shared memory

architectures.

2.2 Domain-specific Parallel Abstractions

Domain-specific programming languages and systems provide even higher level ab-
stractions. They provide extensive support for a problem domain, often with specialized
data type and structures. In scientific applications, domain-specific programming support
often takes the form of special library and programming framework. Special libraries
have been critical to scientific computing. Well known libraries such as LAPACK [1]
(provides collections of parallel solver kernels for dense and banded matrix structures)
and PETSc [4] (data structures and routines for the parallel solution of partial differential

equations) are used by many applications. These are the de facto standards for their ap-
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plication domain and represent the very high-performance that can be achieved for these
tasks on modern architectures.

It is worth mentioning several attempts to develop portable high-performance scientific
libraries in the late 1990s. The libraries produced by those efforts are collectively called
active libraries [83]. Unlike traditional libraries, which are usually passive collections of
data types and functions, active libraries take active role at compile-time to tune them-
selves for a target machine. They interact with the compiler and machine environment
to generate additional components, specialize algorithms, and reconfigure critical parame-
ters, etc. Well known examples include ATLAS [85] (Automatically Tuned Linear Algebra
Software), the Blitz++ array library [82], FFTW [31] for Fourier transforms, the MTL ma-
trix library [73], and the POOMA library for data parallel physics [44], etc. Active libraries
blend the traditional boundaries between compiler and library by performing computations
and metaprogramming at compile- or run-time to tune themselves, thus achieving porta-
bility (by reconfiguring themselves) and performance. At the same time, due to their use
of advanced programming features (often object-oriented and generic programming [77]),
the programming constructs and interface of most active libraries are quite elegant and in-
deed very compositional. These activities have however faded out in recent time perhaps
due to the intimate interaction between these libraries and the compilers. If the com-
piler implementations do not have predictable behaviors, then the performance of active
libraries may suffer or may not be predictable.

Among the active libraries, the FFTW library uses a unique and innovative approach
for self-tuning. FFTW employs a run-time planner that takes problem properties and re-
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turns a fast executable structure that can be used to perform discrete Fourier transform.
The planner works by recursively breaking the problem to many subproblems and then
uses dynamic programming technique to search through the problem space and measures
the actual running time of many different plans and selects the best one. Those baseline
subproblems are solved by highly optimized special “codelets” generated by a special code
generator [30]. The planning may be time consuming. However since a plan can (and is
likely to) be reused many times, the cost is thus amortized.

Domain-specific programming framework for computational science often facilitate
numerical application development by hiding most of the bookkeeping work in parallel
programming. Thus a user can concentrate more on the numerical aspects and be more
productive. Examples of these systems include the OVERTURE framework [12, 39] for
computations on overset grids, the Cactus framework [34] for Cartesian adaptive mesh
refinement solvers as well as collaborative development and computational grid [28] en-
abling technology. These frameworks typically make specific assumptions about the ap-
proaches used to solve given problems. If the numerical strategies are sufficiently similar
to the model used in the framework, they can be helpful. However each of them appears
to target a rather narrow range of problems. Thus they can be often viewed as “plug
and play” systems and often impose detailed component structure and interaction require-
ments. They can also be thought of as a coordinator for software components written ac-
cording to their specifications. Note such coordination and composition are usually coarse
grained and ad hoc, meaning that they usually lack a clear and fundamental programming
model that can succinctly describe the types of computation and problems they intend to
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support. However one direction where these frameworks show promises is component
reuse. Reuse can resolve much of the complexity in software construction by avoiding the
construction at all. But this also means that the concept and interface of a computational

framework would need to achieve a prevailing status before reuse is possible.

2.3 Summary

This chapter sampled various parallel programming languages and systems. Although
the intention is not to directly compare them to the research work in this dissertation, there
are several observations that can be made. First it is obvious to see that for a programming
language or system to be useful for scientific computing, it must be able to support the dis-
tributed memory architecture well. Although shared memory and other architectures are
also used in numerical simulation, distributed memory system remains to be the most per-
formance/cost effective and scalable system today and is generally the preferred choice for
running scientific applications. There are many elegant abstractions designed for scientific
applications that fail to produce an efficient distributed memory implementation, which
limits their interest and real usefulness in the domain of scientific programming. Put this
in the perspective of the essence/accidents point of view, these systems do not address the
accidental cost in parallel programming well since most of these accidents today appear to
be the efficient resource management on distributed memory platforms.

The second important observation is that useful abstractions that are intended for a
wide range of problems usually need to incorporate some controls or annotations from

the users. Implicit and complete automatic parallel programming can be extremely hard
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to have a high-performance implementation. For example it has been argued [60] that
declarative programs lack the ability to efficiently utilize the inherent parallelism and it
is necessary that they provide some controls to the programmer to specify where paral-
lelism may be beneficial. In fact, this is largely the reason why many parallel declarative
languages have added some “extra-declarative” constructs in the end. This observation
can also be made in the case of parallelizing compilers. One cause of the problems in
parallelizing compiler technologies is that they are usually designed to support traditional
sequential programming languages, whose abstractions often ignore any parallel computa-
tional aspects. In turn, algorithms expressed with these abstractions do not have adequate
level of semantics for the compilers to recognize the parallelism.

If the major goal of an abstraction is to provide natural solution description to remove
or reduce the accidental costs, then adding adequate annotations should not detract the
value of an abstraction too much. Carefully designed annotations shall not involve tedious
and detailed low-level programming. The benefit of annotation is that the choice to use
it is on the user side. Fail to use it should only reduce the performance and not the cor-
rectness. Moreover, the system is free to choose whatever implementation that is deemed
suitable. The importance of proper annotation is that it tells the system where and how
to pay attention to potential performance optimizations. For example, the parallel loop
directives in OpenMP do not in general expose the programmers to the actual parallel im-
plementation of data partitioning and distribution. The system can even choose to ignore
the annotation if it thinks that is appropriate. For example, the register keyword in the

C language is used to hint the compiler for register optimizations. Although it is still a
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legitimate keyword, it is now seldom used and the compiler may ignore any of such use
due to the advance of register allocation algorithms. Therefore it seems necessary that a
successful parallel programming abstraction should incorporate some amount of annota-

tion and control indication from the programmer if it is to be applicable to a wider range

of problems.
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CHAPTER 3

THE KEY-VALUE-REF MODEL AND THE LOCI FRAMEWORK

Loci is a programming framework under development at Mississippi State University.
It is specifically designed for the programming support of data parallel computational field
simulations. The current Loci design utilizes a restricted relational model as the basis for
its programming model. This relational model is extended in this dissertation to become
the more general “key-value-ref” model that allows the modeling and description of a
wider range of CFS problems, particularly those involving dynamic components, such
as multiphase flow simulation. The details of the Loci framework and its design and
implementation can be found in other recent publications [33, 57, 74, 87, 88]. The focus of
this chapter is to establish necessary terminologies, notations, and background information

for the later chapters.

3.1 Basic Concepts and Terminologies

The fundamental model used in the Loci framework is a variant of the relational model
as in the relational database management systems. In this dissertation, it is named as the
“key-value-ref” model to make distinctions to the model used in conventional relational
database system. The new name chosen in this dissertation also reflects the new develop-

ments to the model that are presented in later chapters.
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Definition 3.1 The key-value-ref model is a variant of the relational model. It is abbrevi-

ated as the KyR model. The basic elements in the model are: key, value, and ref.

Definition 3.2 A key is an object that can be enumerated in a computation. Only equality

test can be performed on keys.

Remark 3.1 In CFS problems, keys usually have geometric meaning, e.g, a discretized
space region, and they are also the place where computations occur. Keys are represented

by integers in the current KyR model.

Definition 3.3 A value is a property associated with a key. On the model level, no oper-
ators are defined for values. However in the numerical computation level, they are free to

be used in any operations the user defined.

Remark 3.2 Value has a broad meaning. Every attribute in a computation can become a
value. Since values have no defined operators in the model, they cannot be compared in

the model’s language.

Definition 3.4 A ref is a special type of value associated with a key. Ref is specifically
used to denote the acquaintance of a key to another key. Only equality test can be per-

formed on refs.

Definition 3.5 The basic data structure in the KyR model is table. A table is a way of
organizing (key, value) and (key, ref) pairs. A KVR table is composed of two columns.
The first column records keys, and the second one records either value or ref (in the same

table, it cannot be mixed with both types). Given a table t(key|value), its columns are
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referenced as ¢.k and ¢.v. Similarly, ¢.k and t.r are used to refer to individual column in

table t(key|ref).

Remark 3.3 In the current model design and implementation in the Loci framework, a
KVR table can only be looked up on the key column. Given a table ¢ and a key k in

dom(t), the look up of the table ¢ with the key & is denoted as ¢[k].

Proposition 3.1 A key cannot exist on its own, it must be bonded to either a value or a

ref. In other words, keys only exist in tables as (key, value) and (key, ref) pairs.

Definition 3.6 A store is an alias for a KyR table with “key|value” as column names.

There is no duplicated keys allowed in a store.

Definition 3.7 A map is an alias for a KyR table with “key|ref” as column names. There

is no duplicated keys allowed in a map.

Definition 3.8 A multistore is a store in which duplicated keys are allowed.

Definition 3.9 A multimap is a map in which duplicated keys are allowed.

Definition 3.10 The inverse of a map or multimap is an operation that projects a new map
or multimap with the columns reversed, i.e., the original key column becomes the new ref
column, and the original ref column becomes the new key column. The inverse of a map
can be a map or multimap. The inverse of a multimap can also be a map or a multimap.

The function “inv(m)” denotes the inverse of a map or multimap m.
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Definition 3.11 A param is a special type of store whose value column has the same

contents for every key in the key column.

Remark 3.4 The need for the param type is to facilitate a table data structure implemen-

tation that is efficient on memory.

Definition 3.12 The domain of a KyR table is defined to be the set of all keys in the key

column of the table. The function “dom(¢)” is used to denote the domain of a table .

Definition 3.13 Given a map or multimap, its image is defined to be the set of refs that
corresponds to a set of keys in its domain. The function “img(m, k)” is used to denote the

image of a map m corresponds to the set of keys £ in its domain.

Example 3.1 For example, img(m, dom(m)) gives the image of m for its entire domain.

Definition 3.14 The pre-image is defined for map and multimap. Given an image of a
map or multimap, the pre-image is the set of keys in the domain that produces the image.

The function “pmg(m, i)” is used to denote the pre-image of a map m with an image .

Example 3.2 For example, pmg(m, img(m, dom(m))) gives dom(m), the domain of m.

Definition 3.15 A KVR join is an operation performed on two KVR tables that results in
a merged table. It is a special type of natural join operation as in the relational algebra.
Given two tables t1(c;|c2) and t5(c1|c2), the KyR join is denoted as ¢; — to, and it is
equivalent to the standard relational algebra notation 7y, ¢, 1,.co>(t1 X 19).

t1.co=ta.c1
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Proposition 3.2 The KVR join operation produces tables that have either the “key|value”

or “key|ref” columns, i.e., a KVR table. Hence the KVR join is a closed operation.

Proposition 3.3 The definition of KyR join “t1(c1|c2) — ta(c1|c2)” excludes store and
multistore to be in the left side as ¢;. This is because the column ;.c; is in an equality test

and therefore can only be a ref column.

Figure 3.1

An Example 2D Unstructured Mesh

Let us consider an example that illustrates most of the previous definitions. Figure 3.1
shows a two dimensional unstructured mesh. In the view of the KyyR model, the cells in the
mesh can become keys since they can be enumerated and in a numerical algorithm, cells
are often one of the major places where computations are performed. In Figure 3.1, the
cell keys are represented by integers. For the purpose of illustration, we can imagine in a
computation, the cells are assigned a temperature property with the units of Kelvin. Then
such temperature property can become the value associated with the keys representing

cells. The temperature cannot itself become keys because it is in general not enumerable.
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Suppose an algorithm also uses the neighbor definition for cells. A neighbor of a cell is
defined to be all the cells that share one of its edges. For example, in Figure 3.1, cell
12 has its neighbor cells {2,11,13}. This is a commonly used topology in numerical
algorithms since this relationship between cells is frequently used to compute weighted
summations. Under the KyR model, the neighbor of a cell can become a ref associated
with keys representing cells since it defines an acquaintance relationship between cells that
essentially lets a cell refer to other cells. These definitions give the “(cell, temperature)”

and “(cell, neighbor)” pairs.

Table 3.1

KVR Table Data Structure for the 2D Unstructured Mesh

Temperature (1) Neighbors (V) N —T
key ‘ value (Kelvin) key ‘ ref key ‘ value (Kelvin)
2 100 11 0 11 106
11 105 12 2 12 100
12 106 12 11 12 105
13 99 12 13 12 99

Table 3.1 shows the table organization for the definitions just created for the two di-
mensional unstructured mesh. The table 7" records the cell and temperature association.
It is a store type. Note if it can be guaranteed that the temperature is always the same for
every cell, then the table 7' can become a param type. The table N records the cell and

neighbor association. It is a multimap type since the key column contains duplicated keys.
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Finally N — T produces a new table (a multistore) that combines the data in 7" and N.
The use of this join operation has the similar effect of querying in a relational database.
In this particular example, it is used to bring the temperature of all neighbors to all the
cells. Suppose the cells in the mesh in Figure 3.1 are the entire keys defined in 7" and
N, then dom(7T") = dom(N) = dom(N — T') = {0-13}, img(N, {12}) = {2,11,13},
pmg(N,{2,11,13}) = {12}. The join N — T operation is essentially an indirect access

to the table 7' through table V.

3.2 Programming Interfaces

The Loci framework provides a simple rule system as the main programming interface
to use the concepts in the KyR model. The rule system in the Loci framework does not
rely on unification [68], which is a technique widely used in logic programming [47]. The
KVR model employed in the Loci framework has only two columns in the table. It is not
necessary to use unification and this also improves system performance. The Loci rule
system resembles the rule definition used in the “Make” [76] compilation tool. However

the concept of iteration is supported in the Loci rule system.

Definition 3.16 A rule in the Loci framework is a function. The input/output is referred

to as the rule signature. The transformation is called the rule body.

Definition 3.17 A rule signature is a way to document the input and output variables of a

Loci rule. It has the general form head <« tail. The head is referred to as the rule head
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and the taul is referred to as the rule tail. They can only contain variables represent KyR

tables.

Example 3.3 An example rule signature is: A «— 7. Another example: A < (N — T').

Definition 3.18 A rule body is a general routine that can access the variables defined in

the rule signature. They can also define and use local variable that is not KR tables.

Definition 3.19 A named variable is defined as a variable in the rule signature that does

not participate any KR join operation, or a variable that forms a KyR join operation.

Definition 3.20 An unnamed variable is defined as the one denotes a table produced by a

KVR join in a rule signature.

Example 3.4 For example, in a rule signature A «— (N — T), the table produced by
N — T is denoted by an unnamed variable. The variables A, N, and 7' are named

variables.

Definition 3.21 A head unnamed variable is an unnamed variable appearing in a rule head

in the rule signature.

Definition 3.22 The concept head copy is defined to be the copy of a head unnamed vari-
able to the last named variable in the KyR join that produces the head unnamed vari-
able. Assume without loss of generality the head unnamed variable is N — A. Thus to
head copy is to copy the table N — A to the table A. The copy procedure follows: let
n = dom(N),a = dom(A),i = img(N,n),s = a \i,c = pmg(N, s), for each key e in
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the key-set ¢, copy (N — A)le] to A[N[e]]. The head copy is a mandatory action after

each rule.

Remark 3.5 The requirement for head copy is mandatory because if the output is an un-
named variable, then the result is lost after the rule is completed. In practice, head copy
does not result in additional memory copy. It can always be optimized by generating the

results directly to the target variable.

Definition 3.23 An incompatible head copy is a head copy between tables of different
types. It is an error. A compatible head copy is a head copy between tables of the same
type. Only compatible head copy is allowed. The rule that results in an incompatible head

copy is a specification error.

Definition 3.24 The action pulling is defined as accessing (reading) the variables doc-
umented in a rule tail. Accessing unnamed variable is referred to as indirect pulling.

Accessing named variable is referred to as direct pulling.

Definition 3.25 The action pushing is defined as writing the variables documented in a
rule head. Writing to named variable is referred to as direct pushing. Writing to unnamed

variable is referred to as indirect pushing.

Proposition 3.4 Indirect pushing is equivalent to direct pushing via a transformation.

Proof: An indirect pushing rule (M — S) <« X is equivalent to the rule S «— (M X
X). The X denotes the natural join operation as in relational algebra. Since head copy

duplicates M — S to S, the two rules achieve the same effect. n
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Remark 3.6 In the proof, the transformed rule S < (M X X) uses the X operator instead
of the KVR join — operator in its rule tail. Notice that A/ X X merges the table based
on the column M.k and X.k, i.e., the key column in both tables. This produces a table
with three columns 7'(key|re f|value). The KyR join (as in Definition 3.15) has a specific
definition that will only join the ref and the key columns of the two participating tables.

Therefore this new form is not expressible using the KyR model.

Proposition 3.5 Indirect pushing is equivalent to indirect pulling via a transformation.

Proof: An indirect pushing rule (M — S) « X can be transformed to a functionally
equivalent indirect pulling rule S « (inv(M) — X). Likewise an indirect pulling rule

S « (M — X) can be transformed to an indirect pushing rule (inv(M) — S) «— X. =

Definition 3.26 A reduction is a pushing through an associative operator.

Remark 3.7 A normal pushing can be thought of pushing results using an overwrite op-
erator. For example, in a rule 7' «+— .S, when writing data to table 7', the old results will
be erased. Instead if a reduction on 7' is used, then its old data will be combined with the

new one through the specified associative operator.

Definition 3.27 Head reduction is defined to be a head copy between a multistore and a
store, or a multimap and a map that uses an associative operator. Assume without loss of
generality the head unnamed variable is N — A. Thus to head reduction is to reduce the
table N — A to the table A. The reduction procedure follows: let n = dom(N),a =
dom(A),i = img(N,n),s = a \i,c = pmg(N, s), let @ be an associative operator and
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O be an identify, for each key k in key-set s, set A[k] = (), for each key e in the key-set
¢, set A[N[e]] = (N — A)le] @ A[Nle]]. The head reduction is a mandatory action for

each rule that has reduction.

Definition 3.28 A rule with reduction uses the head reduction, if necessary, instead of the

head copy.

Definition 3.29 The context of a rule is defined to be the set of keys where the rule can be

applied to.

Remark 3.8 Given a rule and its context, the rule body is applied to each individual key
in the context. Thus the rule body can be thought of as a function that takes the variables in
the rule tail and a key as inputs. Since the KVR tables can only be looked up based on the
key column, the key passed into the rule body is implicitly assumed and is not explicitly

expressed in the rule definition.

Remark 3.9 There are indeed many ways to define how the context of a rule can be com-
puted. Because the actual context of a rule is not important to the study presented in this

dissertation, it is treated as a black box in most places.

Remark 3.10 The current implementation of the Loci framework defines the rule context
as the intersection of all the domains of the variables listed in the rule tail. Given arule ¢ «+
S1,82, - .., Sn, then the context of the rule is: dom(s;) A dom(s,) A ... A\ dom(s,). The
current Loci framework also supplies the rule context to each rule automatically, freeing

the programmer’s responsibility to supply a correct rule context.
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Codelet 3.1 Example Loci Code for Computing Average Temperature

1 // type declaration

2 $type avg_temp store<double> ;

3 $type temperature store<double> ;

4 $type neighbors multiMap ;

5 // rule definition (sinature in the parentheses)
6 $rule pointwise(avg_temp<-(neighbors->temperature)) {
7 int sz = $neighbors.size() ;

8 double sum = O ;

9 for(int i=0;i<sz;++1i)

10 sum += $neighbors[i]->$temperature ;

11 $avg_temp = sum/sz ;

12 }

Codelet 3.1 illustrates the actual Loci syntax to define rules for computing the aver-
aged temperature for a cells from all of its neighbors as the example in Figure 3.1. The
Loci programming syntax is based on the C++ language with enhanced syntax used to
define Loci variables and rules. In Codelet 3.1 the “$type” keyword signals declaration
of a Loci variable and its type. The type store is defined as a C++ template. Since store
is a “key|value” table, the first column is implicitly assumed to the type “int” since keys
are presently all represented by integers. The parametrized type in the template is the
value type. KyR maps do not need template since they are “key|ref” tables and hence
type “int” is assumed for both columns. The “$rule” keyword is a directive used to
indicate the definition of a rule. The “pointwise” keyword indicates the rule is a conven-
tional Loci rule whose rule body is to be applied to the table row by row. The enclosed
code within the braces from lines 7-11 is the rule body definition. The “$” symbol in the
rule body signals the variable following it is a Loci variable. Such an access is implic-

itly assumed to be a look up into the variable based on the currently enumerated key in
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the rule context that is passed in to the rule body. The method “$neighbors.size()”
in line 7 provides the number of rows associated with a key in a multimap. The use of
“$neighbors[i]->$temperature” provides a mechanism to access all of the rows asso-

ciated with a specific key in the unnamed multistore.

Codelet 3.2 Example Loci Code for Accumulating Temperature

$type accu_temp store<double> ;

// initialize to an identity value
$rule unit(accu_temp) {
$accu_temp = 0 ;

// perform a reduction operation

$rule apply( (neighbors->accu_temp)
<-temperature) [Loci: :Summation] {

int sz = $neighbors.size() ;

10 for(int i=0;i<sz;++1i)

11 join($neighbors[i]->$accu_temp, $temperature/sz) ;

12 }

1
2
3
4
5}
6
7
8
9

Codelet 3.2 shows an example where a reduction is performed to compute the temper-
ature contribution a cell can have on all of its neighbors. This is an operation in which
each cell adds a fraction of its temperature value to all of its neighbors. The “unit/apply”
definitions in Loci provide a mechanism to setup a reduction. The “unit” definition is
used to initialize a variable to a unit value (an identity). The “apply” defines an asso-
ciative operator that combines partial values. In Codelet 3.2 this associative operator is
the summation operation. The “join” clause provides a way of triggering the associative

operator while pushing the results.
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3.3 Implementation Strategies

An implementation must solve two core problems for a Loci program to run correctly
(not necessary optimally or in high-performance). The first problem to solve is to correctly
resolve the rule dependence information so that the program has an execution flow. The
second problem is to fill in the critical information in the execution flow so that the program
can be ready to run. Examples of information considered critical include the context of

rules, parallel synchronization check point, and memory management instruction, etc.

N context [ N | decoration
I 10—-33]| 1 ;
- o~ s
D : D :
B - B —
P : P delete B
G ) G
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[A] C ’ C
-[Fnl 199 * colﬁtofol L00]
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Figure 3.2

Loci Implementation Strategy

Figure 3.2 shows an overview of the major strategies involved in the core implementa-
tion of current Loci framework for the KR model and the rule system. Graph processing
and key-set manipulation are the two basic techniques used in the process. Figure 3.2
outlines the four major stages in the current Loci implementation, separated by the large

arrows in the figure. The first stage represents the program, i.e., a collection of rules. This
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is typically the resulting program a developer supplied to the system. The second stage
represents the results obtained from the graph processing analysis. After this stage, all the
rules are linked together and form graphs that represent possible functional blocks and ex-
ecution flow. The graphs obtained at the end of stage two represent many possible flows of
execution. Stage three then selects one of the valid execution flow and converts the graph
into a list of execution module. The final stage then fills in the needed information based

on the analysis of the entire list and any analysis results collected in the previous stages.

3.3.1 Graph Processing and Analysis

A graph is a frequently used model in compiler implementations. In the Loci frame-
work implementation, it is mainly used to model the dependence order for all the rules
and the iteration and functional structure for the entire program. Upon scanning all the
rules, Loci constructs a dependency graph involving all the rules used by a program. Such
a dependency graph is further processed into a hierarchy of simple directed acyclic graphs
each represents a functional block (a multilevel graph). Note that not all the nodes and
edges in the graph are added at the same time. Some may become part of the multilevel
graph at a later time pending further analysis. Graph decoration is a frequently used tech-
nique in the Loci framework. It refers to the process of visiting the multilevel graph in
a specific order and enhancing the graph by adding, removing, or modifying the existing
graph components. For example, the current memory management scheme adopted in the

Loci framework is implemented as a series of multilevel graph analysis and decoration.
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At the final stage, a graph scheduler will compile the hierarchical graphs into a flat list of

execution modules.

3.3.2 Key-set Manipulation

The key-set manipulation is used to resolve all the rule pulling and pushing patterns
and also the context for each rule. The manipulation of key-sets is roughly divided into
three stages. The first stage begins with the scanning of all the KyR “—” operators. In
a parallel run, such joins will result in tables on a process to be accessed on other remote
processes. In this situation, all the unnamed variables in a Loci rule are expanded to in-
clude any of the remote data that are not currently on the local process. The second stage
renumbers all of the keys on a process to optimize memory allocations. This step is neces-
sary and often indispensable for a parallel run, especially programs that involve unnamed
variables. Figure 3.3 shows an example of key renumbering. In the example, the mesh
is partitioned into three pieces and each is assigned to a different process. If the original
key numbering is retained after the parallel partition, then memory allocation could pose
a significant problem. Consider the partition p, in Figure 3.3, without renumber, we will
need to allocate over {0—10}, which wastes the unused space of {2-8}. This assumes that
the allocation is contiguous. Indeed dynamic data structure such as hash table can be used
to avoid the allocation problem. However the run-time performance may degrade signifi-
cantly. In the next stage, Loci traverses the multilevel graph and performs a series of set

operations to build the rule context. This process can also be roughly regarded as solving
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a simple Datalog [81] program. Since all the parallel distribution of keys are recorded, the

parallel communication schedule can also be generated in this stage.

Figure 3.3

Renumbering Distributed Keys

The key-set manipulation presently constitutes the largest overhead in the Loci imple-
mentation. Improving its efficiency is still an ongoing research effort. The critical part
in the key-set manipulation is however not to improve the performance of the individual
set operations. Since the key-set manipulation involves many stages at different time that
may be repeated frequently for complicated programs, the most important performance
optimization will be to recognize the opportunity to minimize the steps involved in the
key-set manipulation and also to aggregate data in a single processing step to take advan-
tage of the set operations. In the current implementation, the key-set manipulation cost is
easily amortized as the steps involved tend to be only run once. However improving the
performance of this process is critical to the expansion of the application domain of the

Loci framework, particularly for dynamic problems.
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CHAPTER 4

LAGRANGIAN PARTICLE TRACKING: A CASE STUDY

This chapter provides a detailed study of solving the Lagrangian particle tracking prob-
lem on distributed memory computers. The intention of this study is to provide a practical
understanding of the utility of the “key-value-ref”” model in dynamic CFS problems. The
study also serves as a practical case from where observations are made as to what extension

and developments are needed for the “key-value-ref”” model.

4.1 Problem Setup

The Lagrangian particle tracking model considered here consists of solving ordinary
differential equations (ODEs) that describe the Newtonian motion of dispersed particles
under the influence of fluid drag forces. The fluid motion is described through the Navier-
Stokes equations, which solve for conservation of mass, momentum, and energy of the
fluid.

% du,

m = Uy, ¥ = D,(u—uy) 4.1)

The governing equations (Equation 4.1) for the particle movements were derived using the
Basset-Boussinesq-Oseen (BBO) assumption that the density of the particle is much larger
than that of the fluid and particle size is small compared to turbulence integral length scale,

and that the effect of shear on particle motion is negligible.
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In Equation 4.1, u,, is the particle velocity, and w is the fluid phase velocity interpolated
to the particle location, which is represented as x,,. For the current setting, the body force

on the particles such as gravity is neglected for simplicity. The drag force on a solid

particle is modeled using a drag-coefficient, Cyq: D, = 3C’dZ—Z

_ 3 |u—up|
4

o where d, is the

particle diameter and C; is obtained from the nonlinear correlation: C; = ﬁ—; (1+ aReg).
Re, = de;—:”' is the particle Reynolds number. The constants a = 0.15, b = 0.687 are
empirically tuned coefficients in the drag correlation.

Since the fluid solver used in this implementation is implicit, it is preferred to choose an

implicit Lagrangian equation solver such as Adams-Bashforth backwards differentiation

scheme. The one used in this implementation can be expressed in a generic form as:

w4 T = Atpupt! 4.2)
1=1

uptt > "t = AEBD, (umt — uptt) (4.3)
1=1

where s is the total number of the multistep scheme, At is the time step, and coefficients

for the second order scheme (s = 2) used in the current implementation are: a; = —%,
__1p_2
Qg = 3> = 3-

Figure 4.1 shows a snapshot of a simulation of liquid spray in a combustion engine. In
the snapshot, a sample of injected droplets are deflected by coaxial swirling flow and are
colored and sized by their velocity (the redder and larger a droplet, the greater its velocity).
The movement of these droplets and their interaction with the flow in the combustion

engine are simulated using the Lagrangian approach. Figure 4.2 shows a cutting plane of
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Figure 4.1

Liquid Spray in a Combustion Engine

the simulated combustor model and is rendered with the average particle density on the

plane (the redder a region, the denser the particle concentration).

4.2 Available Parallel Formulations

Lagrangian particle tracking is an important example of two-phase disperse flow sim-
ulation methodology. It represents a large class of discrete-continuum simulations that
involve modeling the time evolution of a large number of discrete elements that communi-
cate with a set of continuum field equations. Some notable uses include from the tracking
of electron trajectories in plasma under the forces of electromagnetic fields to tracking
droplets coupled to fluid flow. The main objective in Lagrangian particle tracking is to
determine the exact physics information of each individual particle based on the particle-
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Figure 4.2

Liquid Droplets Density Plot

field interaction. Since such interactions are mostly modeled from interpolated field data,
it is therefore required to determine which field cell contains each particle so that the in-
terpolated data can be determined. This usually involves a geometric search procedure on
a complex unstructured field mesh. The movement of the particles in the field creates a
major difficulty in obtaining an efficient parallel formulation. All the available approaches
differ in how to choose the trade-off between an increased parallel computation and an in-
creased parallel communication cost. The formulations can be broadly categorized based

on their data decomposition strategies.

4.2.1 The Cell-dec Approach

The cell-dec approach decomposes the field mesh and assigns particles to their con-
taining mesh cells. The process that performs the computation for any given set of mesh
cells also performs the computation for particles contained within those cells. Thus the
computational load on a process is proportional to the total number of cells and parti-
cles assigned to that process. In the cell-dec approach, moving particles in the field mesh

amounts to transferring them to new cells that contain the particles. When particles move
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into cells owned by other processes, they will be transferred to the corresponding process.
One critical aspect of obtaining good performance in the cell-dec approach is obtaining a
cell distribution to processes that balances both cell and particle computations. A compli-
cation to this approach is caused by the movement, creation, and destruction of particles
that typically occur as simulated time advances. As a result, the simulated time evolution
of particles can easily defeat any initially optimized data decomposition resulting in severe

load balancing problems that can seriously degrade the system performance.

-

Figure 4.3

Load Balancing Problem in the Cell-dec Approach

For example, Figure 4.3 shows a possible scenario where the particle migration causes
a load balancing problem. In the example, the field mesh is decomposed into three parts.
Particles are assigned to partitions according to their association with mesh cells. The
initial partition is relatively balanced in terms of computational load (assuming that the

cost on the cell and particle computations is uniform). At a later time, most particles
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migrate to one partition and some exit the mesh. This causes one parallel process to

compute most of the particles at that time.

-

Figure 4.4

Mesh Repartitioning in the Cell-dec Approach

The cell-dec approach has been most commonly used for parallel coupled Lagrangian
particle simulation with unstructured field solver. There are plenty recent publications [2,
18, 19, 38, 61] and significant practical applications [17] that employed the cell-dec ap-
proach. All of these studies use the the periodic repartitioning strategy to offset the load
balancing problem. This repartitioning strategy monitors the computational load on each
process. When the load imbalance exceeds a specified threshold, the program is stopped
and the mesh is repartitioned taking into account the current particle load. Figure 4.4
shows a possible mesh repartitioning. After the mesh is repartitioned, the program runs on
the new decomposition until the next repartitioning step.

There are several approaches to repartition the mesh. Some use a combined weight

function that weighs in both cell and particle into the computational load factor [18, 19].
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Others [2, 38] use multi-constraint graph partitioning algorithms [45] that try to balance
both the cell and particle distributions while also minimizing the interactions among the

different partitions.

23

Figure 4.5

Problematic Mesh Repartitioning

The combined weight function approach, although more convenient to compute, can
still suffer load imbalance if the weight is not computed carefully. Figure 4.5 illustrates a
problematic example. In the figure, the imbalanced mesh is repartitioned using the com-
bined cell and particle number as the weight. It can be seen that the total computational
load on each partition is now roughly equal (assuming the cell and particle computational
cost is uniform). However since the cell and particle computations exist in different phases,
the new partition in Figure 4.5 has severe imbalance in each of the phases involved. Thus
the resulting partition will behave poorly despite having a balanced total combined load.

In general, load balancing techniques for multiphase computations need special con-

sideration [84]. To date, multi-constraint partitioning algorithms are generally the best
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choice. These algorithms try to balance each individual phase based on multiple weight
information. Figure 4.4 is a partition that balances both the cell and particle phases. One
drawback of multi-constraint graph partitioning is that it can increase the “edge cut” num-
ber. Intuitively this means that the field mesh is decomposed into more disconnected

pieces, yielding increased parallel communication cost due to the increased boundaries.

4.2.2 The Dual-dec Approach

The dual-dec approach decomposes both the cell and the particle to parallel processes
independently. The process that performs the computation for a given set of cells may
not be the one that performs the computation for particles contained within those cells.
The dual-dec approach maintains a pointer for each particle to its containing cell (and
possibly a list of pointers for each cell to its containing particles) for particle-field inter-
action. Moving particles in the field merely changes their reference pointers. Therefore
the particle movement does not affect the computational load on a process and in gen-
eral, optimized cell and particle partitions can be predetermined and is immune to particle

movement.

BB+

Figure 4.6

[llustration of Partitioning in the Dual-dec Approach
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Figure 4.6 shows an example of the dual-dec data decomposition. A drawback of
the dual-dec approach can be seen from the figure. Since a particle and its containing
cell may be distributed to different processes, the particle-field interaction requires re-
mote data access. In the distributed memory platform, this introduces additional parallel
communication overhead. The dual-dec approach is not widely used in engineering ap-
plications. There appears to be no documented use of the dual-dec Lagrangian particle
simulation with coupled unstructured field solver. The dual-dec approach was used in sev-
eral cases [14, 16] where the field solver employed a regular Cartesian mesh. In this case,
the geometric search required to find the interpolating cell was replaced by an algebraic
function that maps between the particle location and cell number, thus simplifying and
reducing the cost of parallel communication in particle-field interaction. There has also
been investigations to reduce the communication cost in the dual-dec approach by using a
space-filling curve distribution of particles [50]. The conceived high cost in parallel com-
munication and software development appear to be the main reason for the limited use of

the dual-dec approach in practice.

4.2.3 Other Approaches

There are other effort [24] that employed a particle decomposition with the entire mesh
duplicated on all processes. Although such arrangement removes the need to communicate
the mesh geometry in the particle location search step, it is not memory scalable. This
approach is not feasible in modern particle-field simulations where the field mesh regularly

consists of tens to hundreds of million of cells. Others [3] propose a hybrid approach to
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improve such memory scalability problem. In this hybrid approach, the field mesh is
decomposed into blocks and each block is duplicated on a set of processes. The block
parameters can be tuned for different problems to make a trade-off between the memory

and communication costs.

S e S
s wyd

Figure 4.7
[lustration of the Data Migration Strategy

Another alternative approach to developing a particle-field coupled solver would be to
implement the solver in a data migration framework such as CHARM++ [42] or DSM-
C/MOL [5, 20]. These systems provide mechanisms whereby parallel objects can be mi-
grated among processes to achieve balanced load. In this paradigm, the problem domain is
decomposed into multiple medium-grain chunks. Figure 4.7 illustrates such a decomposi-
tion. Each process usually holds many of these data chunks. The intelligent run-time sys-
tem monitors the system performance and in the event of load imbalance, chunks are mi-
grated among the processes to balance workload. This paradigm is an over-decomposition

approach that essentially is an advanced version of the cell-dec approach with mesh repar-
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titioning. Instead of halting the program and redistributing the mesh geometry completely,
this approach dynamically adjusts part of the mesh geometry distribution on the fly and
can be considered as an incremental approach. As others [19] have argued that incremental
mesh partitioning algorithms can in practice be as expensive as a complete repartitioning,
the costs and benefits of the over-decomposition approach is thus not certain. Also since
the over-decomposition approach is essentially a variation of the cell-dec approach, it is

still prone to many of the problems associated with the cell-dec method.

4.3 Cell-dec and Dual-dec Cost Analysis

The parallel overhead is more tractable in the dual-dec approach than in the cell-dec
approach. In the dual-dec approach, the major parallel overhead comes from the parallel
communication between particle and the field mesh. In the cell-dec approach, in addition
to the load balancing problem, the periodic mesh repartitioning also introduces hidden
costs. First the mesh repartitioning in the cell-dec approach may be practically expen-
sive. Repartition the mesh and restarting the program usually indicates that the parallel
communication schedule needs to be regenerated. For complex solvers, this cost is usually
non-trivial. Second, the mesh repartitioning step in the cell-dec approach usually increases
the parallel communication cost experienced by the field solver.

There are other costs in the cell-dec repartitioning technique that are more subtle and
harder to quantify such as the effects of the field solver domain decomposition on solution
algorithm convergence rates. Often the field solver will employ an implicit time integra-

tion scheme that requires solving a large sparse linear system of equations. Typically these
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linear systems are solved using preconditioned iterative solution algorithms such as GM-
RES [71]. Unfortunately, some of the more effective preconditioners (such as incomplete
LU (ILU) factorization [70]) do not parallelize well. As a result, it is common practice to
apply an approximate blocked preconditioner [25, 75] where the preconditioner is applied
independently to the part of the matrix that each process holds. As a result, changing the
distribution of the field mesh can reduce the effectiveness of the parallel preconditioner
resulting in increased iterations in the linear system solver. Unfortunately the partitions
required to balance load in the cell-dec approach tend to degrade the effectiveness of the
preconditioner introducing a subtle and hard to quantify cost. Such a problem does not
occur in the dual-dec approach as both the field and the particles can choose an optimal
partition independently.

Ignoring these hidden costs for the cell-dec approach (they are either hard to model
or problem dependent), we can have an estimation for its overhead. Assuming the mesh
repartition is effective in detecting the load imbalance, then the redistribution of cells and
particles constitutes the major overhead. The all-to-all personalized communication [35]
can be used to model such data redistribution. Assuming there are total c cells and p pro-
cesses, the cell redistribution has a cost of O(g) if we ignore the communication start-up
cost since for large problems, the message size is large enough to become a dominant fac-
tor. Assuming there are total n particles, then the particle redistribution has a worst case
cost of O(n) when all particles are on a single process. If the load balance detector is
effective (i.e., particles are roughly balanced on each process), then the particle redistribu-
tion cost can be regarded as O(%). The communication start-up cost is again ignored in
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this case assuming the particle number is large enough. Thus the total cost for the mesh
n

and particle repartitioning is 0(19? + 5) in the cell-dec approach with an effective load

imbalance detector.

Figure 4.8

An Even Particle Distribution in the Mesh

For the dual-dec approach, the parallel communication between the particle and cell
constitutes the major parallel overhead. Assuming there are n particles, p parallel pro-
cesses, and ¢ mesh cells. The parallel communication overhead is determined by the
concentration of particles in the field mesh.! There are two special cases. In the first
special case, suppose the particles are evenly distributed in the mesh, i.e., every cell has
approximately the same number of particles. Figure 4.8 illustrates such a case. This is a
trivial case since a particle and its containing cell can be decomposed to the same process.
No parallel communication is required in this case for particle-field interaction. Note that
the particles will need to be communicated as they move between processes in order to

maintain this partition as simulated time progresses. But in this case the communication

'Not to be confused with particle distribution on the parallel processes. The particle concentration or
distribution in the mesh is determined by the problem’s physics characteristics and is not related to parallel
computing.
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cost will be similar to the communications required by the field solver and can thus be

neglected as a separate cost.

Figure 4.9

A Concentrated Particle Distribution in the Mesh

In the second case, the particles are highly concentrated in a region where their con-
taining cells are all partitioned to the same process, as Figure 4.9 illustrates. Then that
single process holds all the cells that contain particles and will be responsible to send all
the needed cell information to all other processes for particle-field interaction. This can
be performed by using a scatter operation [35] and requires O(log p) + O(c;) time on any
network with a bisection width of O(1) [35], where ¢, is defined as the number of cells
that contain particles.

Note this result is dependent on the assumption that all of the particles contained in
any given cell are partitioned to the same process. This data locality requirement is critical
in minimizing the parallel communication cost. Figure 4.10 shows the effects for spatial
and random particle decompositions. In the left case, particles are distributed to processes
according to their spatial locality. As a result, most particles contained in the same cell

are assigned to the same partition. This means that the mesh partition will only need to

52

www.manaraa.com



Figure 4.10

The Effects of Spatial Locality in Particle Distribution

send a cell to one particle partition. In the right case in Figure 4.10, particles are randomly
distributed to processes. As a result, the field mesh partition will have to send a cell to
every particle partition. This is an O(1) versus O(p) cost difference.

In the general case, the particle concentration in the mesh is between the two special
cases outlined previously. The communication required to complete the particle-cell com-
munication is a many-to-many pattern, as illustrated in Figure 4.11. This communication
pattern has been studied by several investigations [43, 66]. However none of these stud-
ies gave complexity analysis for large messages when network contention is considered.
Since many-to-many personalized communication is a subset of the all-to-all personalized
communication, its worse case analysis can be based on the all-to-all personalized com-
munication, which is more widely studied on various network architectures. On a network
with bisection width of O(p), the all-to-all personalized communication can be performed
within O(s) time (with a large message assumption, the start-up cost for the message can
be ignored), where s is the total volume of messages sent and received in all steps from

a single process. On networks with much lower connectivity such as a ring, the bound is
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Communication Pattern in a General REF-PLPT Example

worse due to network contentions. The optimal time on a ring is O(ps) [48]. However for
practical architectures such as switched Ethernet, there exists scheduling algorithms [26]
that can map communications in contention free phases. Also on many network architec-
tures, the bisection width will typically grow as the processor number increases.

With these results, the cost of this many-to-many communication on modern high-
performance communication systems where the bisection width grows O(p), the commu-
nication time can be approximated by O(max(cs, ¢,)), where ¢g is now generalized to
become the maximum number of cells sent by any mesh partition and ¢, is the maximum
number of cells received by any particle partition. We can also note that when mesh and
particles are distributed evenly to processes, and we assume that all particles contained
in a cell are allocated to the same process, then bounds exist on the communication cost
given by ¢; < Z—f (we can at most send the cells we have on a process) and ¢, < % (the
worse case is that each particle is in exactly one cell).

If we assume cells have a uniform distribution to processes, then the term c; is bounded
by the parallel work of the field solver, while the overhead incurred by ¢, cannot exceed the

particle’s parallel work. Thus under the view of the isoefficiency metric [36], the dual-dec
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approach is scalable since the parallel overhead cannot grow asymptotically faster than the
parallel work. The effectiveness of the scheme rests on determining if the constant fac-
tors associated with this communication cost remain sufficiently small as to not dominate
parallel efficiency. This is best evaluated through empirical means.

We can notice that the asymptotic cost of the communications step in the dual-dec
approach has similar bounds to the cost of the repartitioning step in the cell-dec approach.
In fact, if the cell-dec approach requires a repartition step at a bounded rate, then the
asymptotic costs of the dual-dec approach is no worse than that of the cell-dec approach.
Thus the two methods can be regarded as having asymptotically the same overhead for

highly dynamic particle-field simulation problems.

4.4 Practical Implementation

This section will focus on several higher level strategies in implementing the particle
location search and the particle-field interaction in the dual-dec approach. The cell-dec
approach relies on the mesh repartition to achieve good performance. Efficiently reparti-
tioning the mesh and regenerating all the communication schedule is related to the actual

data structure choice and the problem characteristics.

4.4.1 Particle Location Search

The objective of the particle location search is to find which cell contains the particle,
given its position. This involves two decisions. First a predicate is needed to determine

whether or not a particle is within a given cell. Second, an algorithm is also required to
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examine a sample of cells to decide which one contains the given particle. The predicate
needs to be robust and the algorithm needs to quickly filter unpromising cells (reducing

the search space).

Algorithm 4.1 Particle In Cell Predicate
Require: particle info. (p), cell geometry (cell)
Return: walk (true), stay (false), target cell in case of walk
1: for all f in cell. face do
2: vl < p.pos — f.center
3: w2« f.normal
4 d « dot(vl,v2)
5:  if d > 0 then
6
7

return (true, neighbor(cell, f)) // the neighbor that shares f with cell
end if
8: end for
9: return (false, L) //all dot products non-positive

The projection based predicate is usually a good choice. The left part in Figure 4.12
shows an example. Given a particle’s position and the geometry of a cell, we can compute
the dot product of the normal of each edge (face in case of 3D) and the vector pointing
from the edge center to the particle position. The particle is within the cell if all these
dot products are non-positive. This method is usually preferred because it is more robust
for irregular geometry than other approaches such as the partial volume method [2]. The
algorithm for the projection predicate is shown in Algorithm 4.1. In the algorithm, it
returns a pair of data. The first is a flag indicates whether the particle is still in the cell. In
the case of not, then the target cell the particle should search next is also returned.

The “walking” algorithm is preferred as the search methodology in unstructured mesh.

Since we track particles and know their previous locations, it is much faster to initiate
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Particle Location and the Search Algorithm

Algorithm 4.2 Walking Algorithm for Single Particle
Require: particle info. (p), cell geometry (p.cell)
Ensure: particle in the correct cell, or removed (p)

1: loop
2 (walk, cell) « in_cell(p, p.cell)
3:  if walk then
4: p.cell < cell
5: else
6: if cell is boundary then
7: remove p // p falls out of boundary
8: else
9: return //located
10: end if
11:  endif
12: end loop
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a guided search from the previous position. In typical applications, particles also move
slowly in favor of the numerical stability. Thus its new position is usually nearby the pre-
vious one. Given a particle’s previous containing cell, we can use the in-cell predicate just
discussed to determine if the particle is still inside. If not, we then move to the neighbor
cell who shares the edge that generates a positive dot product in the predicate test. In this
way, we are moving closer to the particle’s actual location and will eventually converge
to its new position. Figure 4.12 shows an example walk in the right part. All the edges
crossed are highlighted in the figure. Such guided search is more effective than a tree
based spatial search algorithm if we have the knowledge of the previous position. It is also
referred to as the “known vicinity neighbor-to-neighbor” search algorithm [51].

The walking algorithm is shown in Algorithm 4.2. It repeatedly calls the in cell pred-
icate until a true containing cell is reached. In the dual-dec approach, at each step the
remote mesh topological geometry needs to be communicated to the local process. The
cell-dec approach always has particles and their containing cells on the same process, thus
no communication is needed. The communication point for the remote mesh geometry
is usually placed before line 2 in Algorithm 4.2. When locating a list of particles, the
walking algorithm is best to be performed step by step for all of the particles instead of
locating one by one completely. Since particles usually exhibit spatial locality in the mesh,
step by step processing can reuse much of the mesh topology in the search process. For
both the cell-dec and dual-dec approaches, this saves the frequency of communication and
encourages data structure reuse. The algorithm for locating particle list is illustrated in
Algorithm 4.3.
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Algorithm 4.3 Walking Algorithm for Particle List

Require: particle list info. (plist), cell geometry
Ensure: particles in the correct cell, or removed (plist)
1: p_walk < plist // initially all particles need walk test

2:
3:

10:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

R A

while p_walk not empty do
p < p_walk.front()
(walk, cell) <+ in_cell(p, p.cell)
if walk then
p.cell «— cell
else
if cell is boundary then
remove p // p falls out of boundary
else
remove p from p_walk // located
append p to p_located // move to p_located list
end if
end if
end while
swap(p_walk, plist)
if plist is empty then
return
else
goto line 1
end if

4.4.2 Incremental Data Caching

An inherent cost in the dual-dec approach is the parallel communication of remote

mesh geometry within the walking algorithm. An “incremental” data caching scheme is

an effective method to reduce the size of the data in parallel communication as much as

possible. Incremental data caching retains the previously communicated cell geometry

such that the data can be reused instead of recommunicated in future searches. Reuse of

this cell topology data is typically high since a region of mesh topology tends to be shared

by many particle location searches in a number of consecutive time steps. The cache size
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can be limited so that a process can store in its cache to a preset value to prevent memory
overflow. The communication routine will keep caching data until the limit is reached,

after that, data can be replaced using a least recently used policy.

4.4.3 Particle to Process Decomposition

In addition to partitioning the mesh, the dual-dec approach also needs to partition parti-
cles. Since particles have a different topology than the field mesh, it is best to partition the
particles differently. Since in section 4.3, it is shown that the spatial locality is important
in particle to process distribution to minimize parallel communication cost, a partitioning
strategy must preserve the coherence of the particle positions. The Orthogonal Recursive
Bisection (ORB) method is a good candidate. The ORB method constructs axis-aligned
boxes recursively on each dimension and thus particles fall in the same box are spatially
close. Methods that utilize space-filling curves could potentially be more scalable, partic-
ularly those based on Hilbert indexing [50].

Since particles can be created or destroyed during the simulation, the particle distri-
bution could become imbalanced in the dual-dec approach as the simulation progresses.
In addition, since different particles could take on completely different trajectories, the
originally imposed partition will eventually become ineffective at balancing load and min-
imizing communication needs. To address these issues, particles should be repartitioned
periodically when these conditions occur. Load imbalance can be detected by computing
the maximum and average number of particles per process. Since the maximum number

is representative of the actual parallel computation time while the mean is representative
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of the ideal parallel computation time, the current efficiency of the particle computation
can be estimated by examining these two numbers. Whenever the measured efficiency
dropped below a given threshold , repartitioning would be performed. The diffusion of
particles in the field on a process is much harder to detect efficiently. One way to avoid
the potential cost of such detection is to simply impose a particle to process redistribution

at a preset interval.

4.5 Performance Comparison

This section provides a general performance evaluation that compares the cell-dec and
the dual-dec approaches in a realistic engineering application of sufficient complexity.
Since there is no currently available document on the performance study of the dual-dec
approach coupled with complex unstructured field solver, the purpose of such an eval-
uation is to determine the general competitiveness and effectiveness of the dual-dec ap-
proach. However the intention for this evaluation is not to perform an extensive and com-
prehensive performance study for the dual-dec approach, which is likely to be problem
dependent. The purpose of this evaluation is to determine is there any fundamental rea-
son that prevent the dual-dec approach from being used in practice? Section 4.3 shows
for unsteady state particle-field simulations, the cell-dec and the dual-dec approaches in-
deed have the same asymptotic overhead. This section serves to answer whether or not in
practice this result will hold.

The application used in the evaluation in this section is a combustion engine spray

simulation. A snapshot of such a simulation is already shown in Figure 4.1. In the sim-
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ulation, particles are injected into the combustor chamber through the center of a coaxial
injector. Swirling flow is injected in the outer coflow region of the injector. This swirling
flow, through particle-fluid coupling, causes the particles to flow in a complex pattern
where they become slung out towards the combustor walls and entrained in recirculating
flows. The low speed fluid flow is simulated using a preconditioned low-Mach formulation
Navier-Stokes solver called Chem code (developed using the Loci framework) [55, 56].
Both of the cell-dec and the dual-dec methods for Lagrangian particle tracking are man-
ually implemented and coupled with the Chem code. The baseline physics model for the
particle is the one outlined in section 4.1. The geometric search algorithm used is outlined
in Algorithm 4.3.

In order for the evaluation to be realistic and representative, the linear system solver
in the Chem code is set to run a fixed number of iterations regardless of the residual error
reduction. Thus, changes in mesh decomposition do not cause a change in performance,
but instead cause differences in the solution error. Therefore the measurements do not
include the subtle effect of partition on solver algorithm performance. Since these effects
will be highly problem dependent, including them in this measurement would reduce the
general applicability of the results.

The implementation of the cell-dec method follows the mainstream strategy [17, 38].
The PARMETIS package [46] is used to perform a multi-constraint graph partitioning upon
the load becomes imbalanced. The repartitioning of the code is implemented as a restart as
in other major applications [17]. During a restart point, a set of solution, mesh, and particle

distribution files are written. The program can be stopped at anytime (e.g., when load is
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imbalanced) and restarted from the these restart files. Upon restart, a new balanced parti-
tion will be generated. The implementation of the dual-dec method follows the discussion
in section 4.4 and uses the incremental caching and the ORB partitioning strategy.

In the performance measurement setup, I have timed 100 Chem iterations for both the
cell-dec and dual-dec codes. Both of them started from the same initial conditions that
were generated by running the simulation until the particle number is sufficiently large
and particles are sufficiently developed in the combustor chamber. The reason for this
setup is to avoid the need for restart in the cell-dec code since the cost associated with
the restart depends on the real application and particular implementation strategy, and it
is hard to quantify the cost accurately. In reality, when a simulation has large number of
particles sufficiently developed, it will not be restarted frequently to avoid the high cost
(even if the restart is implemented by automatic run-time decision without I/O cost). Such
a setup also avoids the need for particle redistribution in the dual-dec code. Therefore
this setup measures the best potential for both codes for the same problem. The result is

more representative to evaluate the essential cost in both codes.? In addition, the timing

2The reasoning of this claim follows: Suppose the cost (time) of cell-dec code is A + B, in which A is
the cost of restart and B is the rest of the cost. While the cost of the dual-dec code is C' + D total, where
C represents the particle redistribution cost and D represents the rest of the cost. In the cell-dec approach,
the A cost is a variable factor, it is implementation dependent. Moreover the choice of restart frequency
will impact A and B either. Too frequent restart will increase A and decrease B, while too sparse restart
will decrease A and increase B. It is hard to know the optimal choice of frequency of restart that will
minimize A + B. For the dual-dec code, the C part in the cost is a variable factor since the decision to
perform the redistribution is arbitrary. By choosing a problem with large particle number and a short run,
we can eliminate the A and C costs, and therefore we can measure the best potential for both codes, which
is a more fair and representative comparison. In other words, this setup measures whether the unavoidable
communication cost in dual-dec code is worth to trade for the unavoidable imbalanced computational cost
in the cell-dec code in this problem. Note the unavoidable communication cost in the dual-dec code and the
unavoidable imbalanced computational cost in the cell-dec code is problem dependent. However we cannot
be problem independent. Such a setup measures a fair comparison for this problem and can give insights
into such a trade-off.
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measurement | have gathered is the wall time measurement that includes virtually every-
thing, e.g., the fluid, particle, and the initial I/O operation®. Note we cannot measure and
compare the individual components in both codes if the goal is to evaluate the overall per-
formance characteristics and the trade-off. While the unavoidable communication cost in
the dual-dec code can probably be singled out, the unavoidable imbalanced computational
cost in the cell-dec code is much harder to separate. Moreover the wall time is what is im-
portant in practice. Ideally we would like to measure and compare the optimal run-time for
both the cell-dec and the dual-dec code for this problem. However we do not know how to
configure the optimal run-time. While one possible way is to explore a large set of experi-
ments with different configurations, the setup used here directly measures the unavoidable
costs in both codes and is a reasonable approximation that dramatically reduces the ex-
perimental exploration space. This approach is also more aligned with practice because
it is not feasible to try every configuration in a production run to get good performance.
People will most likely estimate the variable parameters and run the program. Moreover
the purpose of the experiments is to find a case that supports the usefulness of the dual-dec
approach while trying to be as objective as possible.

I have chosen to use nine mesh and particle combinations. The mesh is progressively
refined to have roughly two, eight, and fifteen million cells. While the particle number is
increased by varying the injection rate to produce roughly one, six, and fourteen million

particles in the simulation. In this way, the spatial distributions of particles follow roughly

3Note as a complete run, the initial I/O is required to correctly read in the configuration. This cost is
included in both codes and should be the same since the implementation used is the same. Thus its inclusion
does not reduce the representativeness of the measurement.
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the same pattern. Two computing platforms are used in the measurements. The first is
a large-scale diskless Linux cluster with SUSE Linux Enterprise Server 9. The cluster is
composed of 512 Sun Microsystems SunFire X2200 M2 servers, each with two dual-core
AMD Opteron 2218 processors (2.6GHz) and 8GB of memory. The system is intercon-
nected using Gigabit Ethernet. Up to 32 nodes (128 processors) are used on the system
for the measurements. The other platform is an SGI Origin 3900 with 480 700MHz MIPS
R16000 processors and total 480GB of memory, running IRIX 6.5. Up to 384 processors
are used for the measurements. The cluster results are included to show the code per-
formance on a popular modern architecture with a modest communication infrastructure,
while the SGI Origin results are included to measure the scalability of the codes on an ar-
chitecture with a favorable computation to communication balance. The SGI architecture
results show the potential for the codes on parallel architecture with a high-speed and low

latency network.

Table 4.1

Particle Code Linux Cluster Timing (Mesh size = 2M)

particle size 1.1m 5.T™M 13.3m
process cell dual® | cell dual | cell dual
8 1863¢ 1682 | 2247 2095 | 2848 2755
16 978 911 | 1166 1174 | 1588 1559
32 074 544 | 705 689 | 918 885
64 341 370 | 427 505 | 580 592

“Denotes the cell-dec code.
bDenotes the dual-dec code.

¢All results unit is second.

65

www.manaraa.com



Table 4.2

Particle Code Linux Cluster Timing (Mesh size = 8M)

particle size 1.2m 6.0M 14.5M
process cell dual | cell dual | cell dual
32 1915 1726 | 2098 2033 | 2528 2460
64 1086 1013 | 1196 1242 | 1618 1495
128 657 642 | 735 805 | 1038 1068
Table 4.3

Particle Code Linux Cluster Timing (Mesh size = 15M)

particle size 1.2m 6.1M 14.6M
process cell dual | cell dual | cell dual
64 1876 1759 | 2046 1936 | 2451 2180
128 1110 1048 | 1175 1215 | 1383 1522
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Tables (4.1 — 4.3) show the timing results on the Linux cluster. Note not every com-
bination is run under the same set of processors. This is due to the memory constraint
on the Linux cluster node. From these timing results, we can see that for some cases, the
cell-dec code outperforms the dual-dec code, while in some cases, it performs worse. In
general, the timing difference is not significant. This suggests that the two codes perform
approximately the same for these problem configurations on the Linux cluster. We can
then conclude that for this problem case, the unavoidable parallel communication cost in

the dual-dec code is roughly equal to the unavoidable load imbalance cost in the cell-dec
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code. This is a good indication that the dual-dec code is actually very usable in a practical
production run. In fact, if the restart cost in the cell-dec code cannot balance the particle

redistribution cost in the dual-dec code, then the dual-dec code can be superior in this case.

Table 4.4

Particle Code SGI Origin Timing (Mesh size = 2M)

particle size 1.1m 2. ™™ 13.3M
process cell dual | cell dual | cell dual
8 6046 5228 | 7174 6698 | 9355 8643
16 3182 2495 | 3684 3443 | 4950 4713
32 1590 1297 | 1955 1731 | 2791 2476
64 804 671 | 1141 1053 | 1685 1443

Tables (4.4 — 4.6) show the timing results on the SGI Origin machine. Although there is
no memory constraint on this platform (because it is an SMP machine), the same problem-
processor combination is measured in order to be consistent with the Linux results. How-
ever since I am able to use more processors on the SGI machine, I also measured the
largest mesh configuration on 256 and 384 processors. The SGI timing results suggest that
the dual-dec code is outperforming the cell-dec code for all the measured entries in the ta-
bles. This is a reliable sign that indicates the performance of the dual-dec code is generally
superior than the cell-dec code on the SGI machine for this problem. Based on the Linux
cluster results, this is to be expected since the SGI machine has a faster network intercon-
nection, which would reduce the parallel communication cost in the dual-dec code. This

shows that on a high-performance network infrastructure, the communication cost in the
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Table 4.5

Particle Code SGI Origin Timing (Mesh size = 8M)

particle size 1.2m 6.0M 14.5M
process cell dual | cell dual | cell dual
32 6297 5113 | 7141 6082 | 7910 6808
64 3630 2446 | 4122 2985 | 4713 3829
128 1921 1439 | 2254 1700 | 2668 2094
Table 4.6

Particle Code SGI Origin Timing (Mesh size = 15M)

particle size 1.2m 6.1M 14.6M
process cell dual | cell dual | cell dual
64 6655 4550 | 6704 5100 | 7055 6121
128 3728 2505 | 3763 2750 | 4065 3191
256 1969 1455 | 2110 1700 | 2745 1949
384 1506 1319 | 1786 1409 | 2078 1774
68
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dual-dec code can possibly become smaller than the tolerable computational imbalance

cost in the cell-dec code. Though the testing results only support the particular combustor

problem case, it at least provides an example where the dual-dec code can be useful and

can actually be tuned to outperform the cell-dec code.

Table 4.7

Final Particle Number Distribution (Mesh size = 2M)

particle size 1.1Mm 5.7T™M 13.3M
process cell dual cell dual cell dual
g | mean 145519 145566 | 726703 726952 | 1697549 1697878
max | 202322 146848 | 985702 734762 | 2150672 1715189
16 | Mean 72788 72784 | 363393 363389 | 848991 848904
max | 137621 73401 | 496510 367238 | 1423203 857581
g9 | Mmean 36355 36374 | 181658 181731 | 424434 424417
max 70584 36845 | 373084 183636 | 843775 428685
G4 | mean 18202 18199 | 90880 90847 | 212174 212192
max 50779 18698 | 176003 91971 | 604504 214621

As a mean to understand the problem characteristics, I also counted the particle distri-

bution at the end of the 100th Chem code iteration (the last iteration in the measurements)

for all the combinations in the previous measurements. The result is presented in Ta-

bles (4.7 — 4.9). The particle numbers on each process within the dual-dec code is to be

expected. The mean and max value do not in general deviate too much and the difference®

is so small that they can be ignored. The final particle distribution in the cell-dec code is

4The only dual-dec case that did a run-time particle redistribution is the 1.2M particle with 15M mesh
case on 384 processors on the SGI machine. All other cases did not perform any automatic run-time particle
distribution. Thus the numbers presented are a true indication of the load balancing quality for the dual-dec

code.
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Table 4.8

Final Particle Number Distribution (Mesh size = 8M)

particle size 1.2m 6.0M 14.5M

process cell dual cell dual cell dual

g9 | Mmean 37747 37749 | 191858 191883 | 463321 463313
max | 94171 38252 | 432992 193310 | 1734438 466119

Gq | mean 18885 18884 | 95911 95937 | 231658 231645
max | 65799 19336 | 430177 96832 | 1638682 233191

|98 | Mean 9433 9435 | 47968 47965 | 115829 115824
max | 66284 9724 | 387081 48469 | 1351579 116808

Table 4.9

Final Particle Number Distribution (Mesh size = 15M)

particle size 1.2m 6.1M 14.6M
process cell dual cell dual cell dual
Gq | mean 19015 19013 | 97673 97681 | 233636 233707
max | 65047 19416 | 449239 98360 | 1591527 234896
|93 | Mean 9509 9504 | 48830 48845 | 116851 116852
max | 33373 9777 | 386858 49222 | 1012322 117655
956 | mean 4754 4752 | 24418 24418 58416 58426
max | 20246 5140 | 539646 24861 | 659531 59046
agy | Mmean 3169 3168 | 16280 16283 38944 38947
max | 16593 3275 | 441152 16420 | 553083 39487
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however much worse. For some cases, the max value is over ten times larger than the mean
value. Recall that the mean value represents the ideal particle load, and the max value is
an indication of the imbalance factor. This showed the particles are severely imbalanced
in the end for many of the tested cases in the cell-dec code.

This is an indication of the dynamic nature of the problem used in the measurement.
This may also suggest that more sophisticated partitioning algorithms are needed for the
load balancing restart in the cell-dec code. The multi-constraint partitioning algorithms
(the PARMETIS package) used in the cell-dec code only takes into account the static infor-
mation at the partitioning time. Unlike the single-constraint graph partitioning algorithm,
a multi-constraint graph partitioning algorithm usually produces partition on each process
that has many disjoint pieces (more edge cuts). Such a result is to be expected due to the
multiple constraints imposed. However for the particle problem, this may produce parti-
tions that can cause large number of particles to quickly escape some processes due to the
irregular mesh shape and connectivity (e.g., there may be many holes and disconnections
in the local mesh geometry, effectively increasing the mesh boundary significantly on each
process). This can quickly lead to a new imbalanced load that defeats the optimal partition
produced not long ago. Instead if the partitioning algorithm can take into account some
of the particle trajectory information and can compensate particle movement by adjusting
the partitioning accordingly, then the load imbalance may develop more slowly. In other
words, we probably need to also treat the particle movement information as an additional

constraint in the mesh partitioning process. However incorporating such dynamic informa-
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tion may be hard. For example, finding a proper representation for such “velocity weight”

in an algorithm can be a challenge.

Table 4.10

Linux Cluster Timing (Mesh size = 8M, 2nd Chem Iteration Only)

particle size 1.2m 6.0M 14.5M
process cell dual | cell dual | cell dual
32 19.80 17.72 | 20.62 23.17 | 22.42 24.00
64 1123 9.79 | 11.97 11.84 | 13.40 13.92
128 6.17 6.25 | 696 7.43 | 750 851

One additional measurement is performed to provide an example for the potential per-
formance of a nearly balanced cell-dec code versus the dual-dec code. Table 4.10 shows a
measurement on the 8M mesh with all the particle combinations where the timing is only
measured for the second Chem iteration (which includes the fluid solver time with the par-
ticle code time). Table 4.11 shows the corresponding mean and max particle distribution
for the problem. Since this is at the very beginning of the simulation run, even the cell-dec
code should have a nearly balanced particle load as suggested by Table 4.11. The timing
results in Table 4.10 however suggest that both of the codes perform at the same level. In
some of the cases, the dual-dec code is even faster than the cell-dec code. Such a perfor-
mance behavior may be caused by several factors. For instance, since the cell-dec code
uses the multi-constraint mesh partitioning that increases the partition edge cut, the fluid
solver may take different time in each of the code. Identifying and analyzing the perfor-

mance characteristics of individual component and their interaction is beyond the goal of

72

www.manaraa.com



Table 4.11

Second Iteration Particle Distribution (Mesh size = 8M)

particle size 1.2M 6.0M 14.5M
process cell dual cell dual cell dual
39 mean | 36913 36911 | 187956 187956 | 453806 453789
max | 39259 36926 | 200779 187985 | 478473 453846
64 mean | 18456 18455 | 93980 93979 | 226895 226899
max | 22876 18463 | 107132 93996 | 254464 226928
123 mean | 9227 9227 | 46988 < 46990 | 113453 113451
max | 11661 9234 | 60023 46999 | 140240 113472

this dissertation. However these two tables show that the trade-off between the two codes
can be complicated.

Finally Table 4.12 shows a rough estimation of the restart cost in the cell-dec code and
the run-time particle distribution cost in the dual-dec code for the 8M mesh configuration.
The restart cost estimation includes the mesh and particle data structure reading I/O cost
with the fluid solver start-up cost (the time to generate a Loci schedule since the fluid
solver is implemented using the Loci framework). However such an estimation is highly
implementation dependent. Also change of strategies such as avoiding the use of I/O and
Loci framework rescheduling by using other approaches such as the mobile objects [20]
can vary the restart cost, possibly reducing it by a large margin. Compared to the program
execution time in Table 4.2, the cell-dec code restart cost is quite high. It is clear that
for this configuration, we cannot afford to increase the restart frequency. The particle

distribution time in the dual-dec code, while not negligible, is however quite small.
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Table 4.12

Estimated Restart and Particle Dist. Cost on Cluster (Mesh size = 8M)

particle size 1.2m 6.0M 14.5m
process cell dual | cell dual| cell dual
32 236.5 048 | 2475 4.31]2989 11.24
64 154.6 0.50 | 166.6 2.35 | 190.6  6.60
128 195.0 0.63 | 219.8 2.03 | 199.7  4.43

4.6 Summary

This chapter presented a detailed study of the two major parallel formulation ap-

proaches, the cell-dec and the dual-dec approaches, for Lagrangian particle tracking sim-

ulation coupled with an unstructured field solver. The cost analysis suggests that for un-

steady state particle-field simulation problems, the theoretical parallel overhead within the

cell-dec and the dual-dec code is on the same asymptotic order. A practical performance

comparison based on a realistic engineering application confirms this result. The perfor-

mance benchmark also suggests the dual-dec approach could be more effective than the

cell-dec approach on a high-performance network infrastructure. This is a direct sugges-

tion for the utility of the dual-dec approach in practical engineering application.
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CHAPTER 5

THE KEY-SPACE CONCEPT

5.1 Reflection on the Key-value-ref Model

Given the case study on the Lagrangian particle-field simulation, what can be learned
as the necessary components in its software development? And what is needed in the
“key-value-ref” model to support the development? From a designer’s point of view, the
essential questions would be: 1) What solution approach to use? 2) How are the par-
ticle and field equations coupled? 3) How is the software structured that can support a
reasonable implementation and flexible future extension and maintenance?

The case study suggests that the cell-dec and dual-dec approaches are both effective.
The manual formulation of these two approaches is largely driven by the need to achieve
good parallel performance and to make a trade-off between the parallel overheads. In the
KVR model, however, these two approaches are more naturally formulated. Since both
particles and cells can be enumerated, then they both can be keys, or one of them be keys
and the other one be the values. The cell-dec approach corresponds to a design where
the cell is key and particle is the value associated with the cell. The dual-dec approach
corresponds to a design where both the cell and particle are keys. Particle-field interaction

easily follows in the design. In the KR cell-dec design, since particle is value associated
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with cell, who is a key, then cell and particle will be grouped in the same table. Interaction
in this case is therefore trivial. In the KyR dual-dec design, since the normal method keys
can interact is through a ref components, therefore we can establish a “key|re f” table for
either the particle or the cell, or both. A question that follows this design is: Is there any
difference in choosing a particle to cell ref, or a cell to particle ref, or both?

The basic KVR program structure is through rule composition, which provides a highly
flexible software architecture. This allows the program behavior to be extended, modified,
or customized all without the need to change the existing software base. The case study
also shows that the critical component in the cell-dec design is the mesh repartitioning and
the critical component in the dual-dec design is to determine an appropriate particle-to-
process distribution. Both components rely on the parallel computing concept, which the
current KR model lacks since it is an implicit parallel model. While an implicit parallel
model is often desirable, experience shows (as the review in chapter 2) that it is often also
ineffective. However we do not want to extend a model that has overly complex parallel
concepts that could complicate the design decisions. Since the particle-field simulation
case study suggests that data distribution and balancing is the key to achieve good parallel
performance, it is helpful to incorporate this concept into the KyR model. Since the mesh
repartitioning decision in the cell-dec approach and the particle-to-process distribution in
the dual-dec approach all relate to the concept of key distribution and grouping on parallel
processes, it suggests that the ability to represent key group is critical in the KyyR model.

This chapter develops the “key-space” concept in the KyR model and show that it
addresses these critical software design and structuring problems. Along the way, design
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questions such as the ref design in the dual-dec representation in the KR model outlined
in the previous discussion are also clarified. It is shown that indeed different ref designs do
make a difference and that the key-space concept is useful in guiding a designer to reach a

good decision.

5.2 The Key-space Concept

The “key-space” is the major development in this dissertation for the KyR model. It
is a mechanism for describing the grouping of keys in the KyR model, and this allows
different groups of keys to be managed differently. This is indeed a concept that only adds
one additional attribute to each key in the KR model, and yet from the lessons learned
in the case study on the Lagrangian particle-field simulation, this simple categorization
of keys is all that is needed to support the modeling of a dynamic CFS simulation and to
distinguish the strategies in different solution formulations. Under the key-space concept,
the KVR model presented in chapter 3 (the original KyR model) can be regarded as a
single anonymous key-space with no operators and functions defined on the key-space
level. Therefore the original KyyR model is a special case of the KR model with the key-
space concept. This implies that all previous software modeled and implemented using
the original KyVR model and its programming interface are still valid and compatible with
this key-space concept. Since key-space is a description of key groups, two additional
questions follow: 1) How is a key-space formulated? 2) Do key-spaces interact? If so, how

do they interact and what such interactions imply to program structure and development?
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Definition 5.1 A key-space is a set of keys grouped together. The basic elements in a

key-space are: the topology, the dynamism, and the tunnel.

Definition 5.2 A key in the KyR model is an object that can be enumerated. A key must
belong to exactly one key-space. Only equality and key-space membership tests are per-
mitted on a key. The predicate “mem(k, S)” performs the membership test on a key & and

a key-space S.

Remark 5.1 The definitions of key-space and key did not specify how a key is assigned to
a key-space. This is left to be determined by the designer. On the model level, an isolated
key is an object with no associated information. This is one reason why an isolated key
can only participate the equality and key-space membership tests. Additional information

is needed for key-space assignment of a key.

Definition 5.3 The lifetime of a key-space refers to the period of time between the key-

space’s creation and destruction.

Remark 5.2 The lifetime of a key-space in the current implementation lasts throughout

the entire application.

Definition 5.4 Given a set of keys s and a key-space K, the intersection of s and K is
defined to be the set of keys in s that are members of K. The function “ist(s, K)” denotes

the intersection of s and K.
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Definition 5.5 The k-domain is defined for a table with respect to a key-space. It is the
set of keys in the domain of the table that are members of the key-space. The function

“kdom(t, K)” is used to denote the k-domain for a table ¢ with a key-space K.

Definition 5.6 The k-image is defined for a map or a multimap with respect to a key-
space. The function “kimg(m,d, K)” denotes the k-image of a map or a multimap m
on a set of keys d with respect to the key-space K. The k-image can be computed by:

kimg(m, d, K) = img(m, ist(d, K)).

Definition 5.7 Given a map or multimap m and a key-space K, define the key-sets e =
img(m, kdom(m, K)), i = ist(e, K), o = e —i. The key-set i is named the internal image
of m with respect to key-space K, and the key-set o is named the external image of m
with respect to key-space K. The function “iimg(m, K')” is an alias for 7, and the function

“eimg(m, K)” is an alias for o.

5.2.1 Key-space Topology

The keys in a key-space can be further partitioned into subgroups, and such partition
is determined by the topology of the key-space. The major purpose for partitioning the
keys in a key-space into subgroups is to have the ability to distribute a set of keys in the

key-space onto a set of parallel processes.

Definition 5.8 The topology of a key-space consists of a function and a set of tables. This
function is called partition function. The set of tables is named critical structures. The
partition function takes an integer n and the critical structures as inputs and maps each
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key in the k-domain of each critical structure with respect to the key-space onto an integer

within the range [0, n — 1].

Remark 5.3 Normally the integer parameter n supplied to the partition function repre-
sents the total parallel process number. Thus the partition function maps the key-space
onto a given set of parallel processes. However the partition function can be used for other

purposes as well.

Proposition 5.1 The key-space topology is not a mandatory specification. A key-space

can have no topology at all.

Proposition 5.2 For a key-space with a topology definition, the partition function will be

invoked if there is a change in any of the critical structures.

For example, in the cell-dec formulation of the Lagrangian particle tracking, all the
cells can be grouped into a key-space. This key-space can have a topology that consists
of a multi-constraint graph partitioning function and a set of maps that define the cell
connectivity and a set of stores that define the cell computational weight as the critical
structure. The movement of particles will cause the weight stores to change. According
to Proposition 5.2, this change will cause the key-space topology to be reevaluated. In the
dual-dec formulation of the Lagrangian particle tracking problem, all the particles can be
grouped into a key-space. Such a key-space can have a topology that consists of an ORB
partition function and a store that defines the particle position as the critical structure. The
movement of the particles will cause the position store to change, which in turn causes the

topology to be reevaluated.
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The notion of key-space topology exposes the parallelism and requires a partition func-
tion. A quality implementation may not be trivial. A strategy to simplify the effort of defin-
ing key-space topology is to create a series (or hierarchical) abstract key-space classes (in
the object-oriented design methodology term). Each of the abstract key-space class con-
tains a complete definition of a topology type. A key-space inherits such abstract key-space
automatically obtains the partition function definition. All the derived key-space has to do
is to define the critical structures. Although it is not possible to enumerate all topologies
that can occur in real applications and wrap them in predefined abstract key-spaces, the
common geometric and numerical constructs should cover most of the cases. This situa-
tion can be compared to the ISIEX [49] typesetting system. ISTEX is widely regarded as a
superior document preparation tool for technical writing. However it is relatively hard to
design new document format and layout from the scratch. Most of the documents designed

in ISTEX will use one of its predefined layouts and only need to have minor adjustments.

5.2.2 Key-space Dynamism

Using the key-space concept, the cell-dec approach can be designed in the KyR model
by grouping the cells in a key-space. Similarly the dual-dec approach can be designed in
the KVR model by grouping all the particles in a key-space and all cells in another key-
space. However we can note that there is a difference in the cell key-space in the cell-dec
design and the particle key-space in the dual-dec design. The cell-dec cell key-space

remains unchanged throughout the entire program execution. While the dual-dec particle
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key-space can have keys (i.e., particles) created and destroyed at run-time. The concept of

key-space dynamism is designed to make distinctions between these phenomena.

Definition 5.9 The key-space dynamism is a tag for every key-space. The dynamism tag
for a key-space is either dynamic, or static. A key-space with a dynamic tag is called

dynamic key-space. A key-space with a static tag is called static key-space.

Definition 5.10 A static key-space K has the following properties:

1. For each table t, kdom(t, K) is fixed during Ks lifetime.

2. For each map or multimap m in a join sequence: t; — ... — t; — m — p; —
...pj» @ > 0,5 > 0, for each key k£ in kdom(m, K'), m[k] is fixed during K’s
lifetime.

Definition 5.11 If a key-space is not static, then it is dynamic.

Remark 5.4 The dynamism of a key-space is a run-time property. Thus a dynamic key-

space may satisfy Definition 5.10 for certain time period during its lifetime.

Definition 5.12 If a dynamic key-space satisfies Definition 5.10 for a certain period of

time during its lifetime, then this period of time is referred to as the stasis time.

Proposition 5.3 A static key-space cannot be determined by static program analysis un-

less with a specifically designed programming interface.

Remark 5.5 A properly designed programming interface can constrain the freedom of
programming such that Definition 5.10 can be recognized to be true for static key-spaces.

Later sections will show such a design.
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Proposition 5.4 If a key-space cannot be identified in the static program analysis to be a

static key-space, then it is treated as a dynamic key-space.

Remark 5.6 It is usually much better to confirm the stasis of a key-space through the
static program analysis. Although there can be different implementation strategies for a
dynamic key-space, the overhead involved is usually much larger than a static key-space

implementation.

Remark 5.7 The current implementation also allows the dynamism of a key-space to be

specified at its definition time to simplify some of the analysis process.

The dynamism of a key-space is important to its implementation. In general, a static
key-space is more easily implemented. Due to its properties, a global analysis and opti-
mization can be performed by static analysis. The Loci framework discussed in chapter 3
can be regarded as an implementation for a static key-space with no topology. A dynamic
key-space, on the other hand, is more difficult to have an efficient implementation due to

the freedom allowed regarding the lifetime of keys and the table structure.

5.2.3 Key-space Tunnel

If the KyR model defines multiple key-spaces within an application, then it is possible
that these key-spaces will interact. For example, a dual-dec formulation within the KyR
model is to construct two key-spaces, one for the cells and one for the particles. Since the

particle and cell interact, there is a need to allow interactions between the key-spaces.
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Definition 5.13 Key-space interaction is defined to be the reference of keys from one key-
space to another key-space. Specifically, given two key-spaces K, K5, and a map m, if
either ist(eimg(m, K1), K5) or ist(eimg(m, K3), K1) is not empty, then we say key-space
K, and K, interact. If ist(eimg(m, K1), K3) is not empty, then we say K reacts to Ko,
denoted as K7 < K. If ist(eimg(m, K3), K1) is not empty, then we say K, reacts to K.

If K1 <9 K5 and Ky << K, then it is denoted as K7 < K.

The key-space interaction has profound implication to the performance of an applica-
tion. Recall at the opening introduction of this chapter, a question is posited regarding
the design choice of particle-field interaction in the dual-dec approach designed using the
KVR model. I will repeat the question here: In the KyR dual-dec design, to communicate
data between the particles and cells, we can create different kinds of maps that link the
particle and cells together. Will there be a difference in any of these designs? If so, which
one is best? This question is studied in detail here.

In the KyR dual-dec design, we have two key-spaces, the cell key-space (named C')
containing all the cells, and the particle key-space (named P), which contains all the parti-
cles. The particle key-space clearly has to be dynamic because particles (keys) are created
and destroyed at run-time. According to Proposition 3.1, tables containing particle keys
then must be resized at run-time, thus the particle key-space violates Definition 5.10 and
is a dynamic key-space. The dynamism of the cell key-space is however unclear at this
moment and depends on the actual design. Suppose that in the particle-field coupling,
not only the particles read cell information, but also the cells need particle information

for the numerical solution of the field equations. A natural and convenient design is to
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use two maps, one (named m4) uses the particle as the domain and cell as the image, the
other one (named ) uses the cell as the domain and the particle as the image. The map
my 1s used by the particles for the pulling (through m; — ¢) of cell information, and
the map ms is used by the cells to retrieve the particle information (through ms — s).
Then in this design, the cell key-space C' becomes dynamic according to Definition 5.10.
Since kimg(ma, kdom(mas, C), C') = kdom(my, P), and kdom(m;, P) is essentially the
set of keys representing all particles, which is not fixed at run-time. In this case, the two

key-spaces have a relation: C' < P.

Table 5.1

Statistics of a Disk-particle Simulation

’ disk-particle simulation, 5000 iterations total on 3 processors

exec time | sched time | critical sched avg search step
7138.6(s) 7.4(s) 1.4(s) 3
st iter 2500th iter 5000th iter
time 0.3(s) 1.7(s) 2.1(s)
particle 131 351270 452701

In such a design, both key-spaces are dynamic. As discussed, dynamic key-space is
difficult to implement. The most straightforward way to implement dynamic key-space
is to rerun the key-set manipulation (see section 3.3.2) for the entire key-space whenever
the k-image of a map changes. Table 5.1 shows some statistical information regarding
a particle-disk simulation problem. This is a manually implemented dual-dec program

with the fluid solver implemented using Loci. The “sched time” shown in the table is
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the total time for Loci to assemble and start to run the fluid solver. It is trivial compared
to the total execution time (which includes both the fluid and particle execution time).
The “critical sched” time refers to the Loci scheduling steps that would be repeated at
run-time to reproduce the fluid solver scheduling. In Table 5.1, the timing measurement
in the second row shows the execution time for a single simulation step with the fluid
and particle solvers time combined. It can be seen that this time is comparable to the
essential scheduling time. Moreover the particle geometry search averages three steps
per simulation step. In other words, if the cell key-space is dynamic, we will have to
repeat the essential scheduling three times per simulation step. With the measured essential
scheduling cost (as in the “critical sched” entry in Table 5.1), the total overhead will be
prohibitive.

An alternative design is to use only one map (named m) with the particle as domain
and the cell as image. The retrieving of particle information by the cell can be designed
through the use of reduction to any cell table ¢ joined with the map m (m — t). This design
achieves the same effects as the first one. However the cell key-space becomes static in
this design since kdom(m, C') is empty and thus C satisfies Definition 5.10 (assuming C
does not have other violations of Definition 5.10). This would allow the cell key-space
to be implemented significantly more efficient. In this case, the two key-spaces have a
relation: P < C. As a summary, the first design uses two maps, and both key-spaces
performs a pulling action to retrieve data from the other one. This results in both key-
spaces to be dynamic. While in the second design, only one map is used. The interaction

between the cell and particle key-space is entirely performed by the particle key-space via
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both the pulling and pushing actions. In this design, the particle key-space is dynamic and
the cell key-space is static. Intuitively a pulling action will transfer the dynamism of the
key-space being pulled into the key-space that initiated the action. While a pushing action
does not transfer the dynamism of the key-space that initiated the action into the receiving

key-space.

Proposition 5.5 Given two key-spaces K and K, suppose K7 is dynamic and K5 <= K7,
then K, has to be treated as dynamic in the program implementation. This says that the

dynamism of a key-space can be affected by other key-spaces that it reacts to.

Proof: Since K, <4 K1, then by Definition 5.13, there exists a map m, its k-domain in K5,
kdom(m, K3), and its external image in K, ist(eimg(m, K3), K1), are both not empty.
Since K is dynamic, then either the set ist(eimg(m, K5), K1), or the correspondence
between kdom(m, K5) and ist(eimg(m, K5), K1) may change in the program. Therefore
a static program analysis cannot confirm the stasis of K5. According to Proposition 5.4,

K, is effectively a dynamic key-space in the program. ]

Proposition 5.6 Given two key-spaces K; and K5, suppose Ko <4 K, then the dy-

namism of /; is not affected by K.

Proof: Since Ky, < Kj, then by Definition 5.13, there exists a map m, its k-domain
in K, kdom(m, K5), and its external image in K, ist(eimg(m, K3), K1), are both not
empty. Suppose K is dynamic, then it is obvious that it will remain dynamic under this
case. Now suppose K is static, then by Definition 5.10, kdom(m, K;) is either fixed

or empty, and for a key k in kdom(m, K;), m[k] will remain the same at run-time. By
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Definition 5.2, kdom(m, K5) A kdom(m, K;) is empty. Thus m[k] will remain static at
run-time and /; remains static. [ ]

These analyses suggest that we should encourage the pushing action from an un-
doubted dynamic key-space to other key-spaces in order to reduce its coupling and to
limit the dynamic effects. There is another important reason why we should favor the
pushing design choice. Consider in the KyR dual-dec approach. If we use the pulling
design by creating a map m with cell as domain and particle as image, then this opens
the possibility to revert the dual-dec design to the cell-dec design. Since in the pulling
method, the operation is initiated by the cell key-space, it can request any computation
through the map m, then the same load balancing problem plagued the cell-dec method
will return because of the imbalanced parallel distribution of img(m, dom(m)). Although
there is no definitive conclusion of the superiority of the cell-dec and dual-dec approaches,
yet such pulling design inherits the disadvantages of both of the approaches (there is high
communication cost and imbalanced computation), which is surely an unwise choice. In
the pushing design, since the computation is always initiated by the key-space that pro-
duced the table in the rule tail, the computation is therefore always balanced (since each
key-space should always be balanced), we only pay the communication cost, which is not

avoidable in the dual-dec design.

Proposition 5.7 Given two key-spaces K; and K,. The effect of K; < K, can be

achieved by K; <= K. This is called the push design, denoted as K <=3>Ko.
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Proof: Given two key-spaces K7 and K. Since K; < Kj, then by Definition 5.13, there
exists a map m, its k-domain in K5 and external image in K are both not empty. Let
d = pmg(m, ist(eimg(m, K5), K1)). Create a new map m,, and copy the portion of d in
m to m,. Remove the domain d from m resulting in m,. Without loss of generality, for
any rule: ¢t «— (m — s), rewrite it as: ¢t < (m, — s) and t « (m,, — s). According
to Proposition 3.5, ¢t < (m,, — s) can be transformed to: (inv(m,) — t) < s. Since
both ist(eimg(m,, K3), K1) and ist(eimg(inv(m,,), K3), K1) are empty, then K, does not

react to K, thus K; 4 K. n

Definition 5.14 A key-space funnel is a map or multimap defined with respect to a key-
space. Given a key-space K and a map or multimap ¢, if the external image of ¢ with
respect to K, eimg(¢, K) is not empty, and the kdom(¢, K) is also not empty, then ¢ is
referred to as the tunnel with respect to /. The KVR join from a key-space tunnel to
other tables is denoted by a special notation “~».” Suppose given another key-space P, if
ist(eimg(¢, K'), P) is not empty, then the tunnel ¢ is said to be from K to P, denoted as

t(K, P). K is called the source key-space, while P is called the target key-space.

Proposition 5.8 When a key-space is defined, if it is intended to have tunnel, then the

tunnel and its target key-space must be specified.

Remark 5.8 Proposition 5.8 is required as part of the programming interface to enable

the recognition of static key-space in the program analysis (see section 5.3.3).
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Example 5.1 For example, suppose ¢ is a key-space tunnel for K, and s is a table, the
t ~ s denotes the KyR join between ¢ and s. Note, an inverse join with the tunnel on the

right side is a conventional join and is denoted as the normal form s — t.

Proposition 5.9 Given a key-space K, suppose ¢ is one of its tunnels. Also suppose there
is a map or multimap m, and let d = kdom(m, K),i = kimg(m, d, K), if d is not empty

and ¢ A kdom(¢, K') is not empty, then ¢ — m is also a tunnel with respect to K.

Proposition 5.10 In a chain of KyR join, ¢t; — t5 — ... — {t,, there can be only one ~»

inside. In other words, there can be only one key-space tunnel in a chain of KyR joins.

Remark 5.9 Such a requirement is to prevent keys from more than two key-spaces being
joined together. In other words, key-spaces can never indirectly interact. This requirement

is imposed to make the implementation feasible.

Remark 5.10 When formulating a design in the KR model, it is wise to formulate un-
doubted dynamic key-space first and then create tunnels in such dynamic key-space to
other key-spaces when key-space interaction is necessary. In short, consider the push de-

sign in Proposition 5.7.

5.2.4 An Example Key-space Definition

The key-space topology, dynamism, and tunnel constitute the major components of
a key-space. When defining a key-space, these are the basic properties that need to be
specified. In the current KyR model implementation, only one abstract key-space class

based on the ORB topology is provided. More are planned in the future, for example,
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abstract key-spaces based on space-filling curves and other spatial geometric structures as

the topologies.

Codelet 5.1 Particle Key-space Definition

$type
$type
$type
$rule

O 00 N N W kR W N =

—_
o

int

—_ = = e
E N O S

p2c dMap ; $type ppos dstore<Vec3dd> ;
orbsp, orbpr param<int> ;

orbth param<float> ;
default(orbsp,orbth,orbpr) {

$orbsp=0 ; $orbth=1.1 ; Sorbpr=250 ;}
$keyspace OrbKeySpace(p2c,ppos,orbsp,orbth,orbpr),
property(name("ParticleSpace") | dynamism(DYNAMIC) |

critical("ppos") | tunnel("p2c","CellSpace")) {

if($orbsp >= $orbpr) // force distribution
$orbsp=0, key_ptn=orb_partition($ppos), return true ;

maxp = mxdoms($ppos) ; int meanp = mndoms($ppos) ;

if(maxp > meanp*$orbth) // particle not balanced
$orbsp=0, key_ptn=orb_partition($ppos), return true ;
++$orbsp, return false ; }

Codelet 5.1 presents the definition of a key-space that inherits the abstract ORB key-

space. Note unlike the previous codes, the definition syntax starts from line 6 has not

been implemented yet. The lower level Loci framework programming interface actually

provides a set of C++ APIs for application programming. However the syntax of these

APIs can be quite verbose, making them cumbersome to typeset and unsuitable for pre-

sentation purpose. We have created a streamlined programming syntax as shown in the

previous code examples. A separate Loci preprocessor is used to translate such code into

the actual Loci C++ interface. Because the work presented here is quite new, I have not yet

incorporated the new syntax into the Loci preprocessor. However the presented code here
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has no fundamental difference to the actual implementation. It was written in this form to
enhance the visual appearance.

The definition of the key-space starts from line 6 in Codelet 5.1. The “OrbKeySpace”
keyword indicates that the definition is inherited from the predefined ORB key-space defi-
nition. The variables enclosed in the following pair of parentheses indicate the KyR tables
that will be accessed by the partition function in the key-space. The “p2c” is the key-space
tunnel. Note its type declaration says it is a “dMap.” All the “dtype”s in Loci represent dy-
namic data structures that are either hash- or tree-based. The reason for this is discussed
in section 7.1. The “ppos” is the particle position store and is used as the critical structure.
Note in the dual-dec design, because particles are themselves keys, they can therefore have
their own tables such as the p2c and ppos. The ppos is also used to deduce the particle
load on each process.

The definition of this particle key-space is directly aligned with the discussion in sec-
tion 4.4.3. Recall from the discussion, the particles to process partition can are determined
by two factors, the first being the particle load and the second being reaching a preset in-
terval. The variables “orbsp”, “orbth”, and “orbpr” serve as the reference parameters.
The orbsp records how many times the key-space critical structure has changed (this is
supplied automatically by the system), orbth is the load balancing threshold discussed in
section 4.4.3, and orbpr is the preset interval number for forced key-space distribution.
Note in line 8 the definition of the key-space tunnel takes another key-space name. This
is required as in Proposition 5.8. The source key-space of the tunnel is implicitly assumed
to be the particle key-space that is being defined. The definition of the topology partition
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function starts from line 9 in Codelet 5.1. It is actually just a wrapper of the topology par-
tition function provided in the abstract ORB base key-space definition. Line 9 tests if the
distribution needs to be enforced. The method orb_partition is the partition function
provided by the base ORB key-space. Line 12 tests if the particle load is imbalanced and
distributes the key-space if the criterion is met. The “mxdoms” and “mndoms” in line 11 are
two methods provided in the base ORB key-space definition that return the global max-
imum and mean number of the keys in the domain of the supplied store or map in the
argument. The rule in line 5 is the rule used in Loci to initialize default value for tables.
Such a definition of the particle key-space can also be thought of a form of annota-
tion for the Loci programming interface since without this critical piece of information,
Loci is not able to perform parallel composition and scheduling for the dual-dec program.
Granted, such an annotation exposes underlying parallelism. However this solution is per-
haps the best we can use if we want the KR model to be applicable as a generic tool.
If we were to create a model only for the proposed dual-dec approach for the particular
particle-fluid simulation example discussed in this dissertation, then the entire definition
in Codelet 5.1 becomes the domain-specific semantic information that can be assumed by
the model itself and the user can thus be freed to be aware of such details. The usefulness

of such model is then confined to the very narrowly defined problems.
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5.3 The Key-space Programming Interface

This section presents the programming interfaces that allow the use of the dynamic
key-space concept to develop programs. These new programming interfaces are compati-

ble with the ones presented in chapter 3 and can be thought of as a superset.

5.3.1 Key Creation and Destruction

The addition of dynamic key-space calls for additional support for key-set manage-
ment functionality in the programming interface since keys in a dynamic key-space may
be created or destroyed. When designing new interface that supports key creation and de-
struction, there are several considerations. First, key creation and destruction is best to be
addressed by a different type of rule that is solely defined for such purpose. Since if key
creation and destruction is mixed with computations, then the precomputed KyR joins in
the rule signature can possibly be invalidated. In addition, arbitrary key creation and de-
struction can also possibly lead to ill-defined rule context since if the context is allowed to
be modified during the rule execution, then the rule execution may not terminate. Having
dedicated rules for key creation and destruction forces the key management activity to be
separated from the computation.

A natural question for this choice is whether such a design (using separate key cre-
ation and destruction interface) will limit the design expressiveness. For example, in the
particle-field simulation problem studied before, particles may be removed when they fall
outside of the mesh boundary. This does not present a problem for a code that uses the

cell-dec design, since in the code particles are values and are therefore easily removed. In
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the dual-dec design there will be a similar computation that locates particles in the mesh.
If we do not allow the destruction of keys, then does this present a design problem? The
solution is to use tagging, i.e., the use of an additional store to tag whether a key during
an arbitrary rule is to be destroyed. And such tag information is then processed later. The
code in section 6.2 will present an example. This may seem to be an awkward solution
and is less flexible than the on the fly erase design. However the resulting benefit is worth

the cost. And this also shows that the design expressiveness is not limited.

Codelet 5.2 Key Creation and Destruction Rules

$type source blackbox<SegContainer> ;

// target_list can be arbitrary Loci variables

$rule insertion(target_list<-source) {
// Loci automatically provides the key and value,ref pair
$targetl = $source.valuel ; $target2 = $source.ref ;
$target3 = $source.value2 ; // ......

}

$type target param<bool> ;

// source_list can be arbitrary Loci variables

10 $rule destroy(target<-source_list) {

11 bool cond = (true|false) ; // result of sources evaluation

12 if(cond) destroy_key($k) ;

13 %}

O 00 9 AN W R W =

Two new Loci rule types are created for the key creation and destruction. Codelet 5.2
illustrates the general syntax and several requirements. The rule “insertion” is responsi-
ble for creating keys. It can only have one source variable and its type must be the one indi-
cated in line 1. The type “blackbox” is a special Loci type that is designed for any external

datatypes. In other words, blackbox does not correspond to the usual KyR tables. It can
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contain any type and Loci does not in general manage the objects stored inside. In this case
the source must be a blackbox that contains the type “SeqContainer.” This is a generic
type (a C++ template) that is a model of sequential container. It can be any container type
as long as it provides an iterator interface and the “SeqContainer::value_type” type
declaration. Valid examples include the “std: :vector” and “std: :1ist,” etc.

The reason for such an arrangement is because keys do not exist independently, they
must be bound to value or refs. Therefore when a key is created, it must be bound to all
the intended values and refs. Otherwise mismatch or other errors can occur (such as loose
keys that do not bind to anything). Thus the insertion rule only takes one source variable
that has all the intended values and refs packed inside. The insertion rule automatically
provides an iteration over the source variable and supplies each entry with a matching key
that is newly generated. All users have to do is to decide how to assign such key-value or
key-ref pairs to the target storage, and also to determine which key-space the new key is
to be assigned to.

The destroy rule shown in line 10 in Codelet 5.2 is responsible for key destruction.
Its requirement is just the opposite to the insertion rule. It does not restrict the source
variables, however it can only have one target variable in the type “param<bool>." This
target variable is actually not used inside the rule. It is provided as an evidence to indicate
that the rule is completed. The purpose is to provide necessary dependence information
should there be a need. The general pattern of the destroy rule is to evaluate the rule tail.
Since we are just dealing with a single key in the rule’s definition (recall Loci automatically

builds the context for the rules, users just define transformation for a single key where
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such definition will be applied to all applicable keys by Loci), we can just tell the system
whether to destroy it or not based on the evaluation result. The “destroy_key” method
provides a mechanism to signal Loci framework the destruction of the key. The “$k”
inside is just a placeholder for the key being evaluated. Section 6.2 will provide concrete

examples of both rules.

5.3.2 The Key-table Placement and Rule Annotation

The key-space concept defined so far does not restrict a table domain to contain keys
from different key-spaces. In fact, this is why the k-domain is defined. For example in
the KR dual-dec design, if a store is defined to hold key and position pair, then one can
put arbitrary keys in the store, such as storing the position of the defining nodes for cells
and the position of particles together in such a store. This is indeed a simple and elegant
design on the model level, for it provides a unified view to the key partition and lets one to
do programming almost oblivious of the existence of key-space.

Although this is a desirable property, it puts too much burden to the model imple-
mentation. It is hard if not impossible to manage mixed keys in a table domain, and
efficiency is certainly also a major concern. Consider an example, suppose we have a
KVR dual-dec design with a cell key-space C, and a particle key-space P, and a table
t. Let d = kdom(t,C),s = kdom(¢, P). If both d and s are not empty, then ¢ has its
domain mixed with keys from both key-spaces. In this case, the implementation of ¢ may

1

incur a large memory or performance penalty. Let ¢ = min(s) — max(d),' assuming that

I Assume the function “min” returns the minimum element in a set, and the function “max” returns the
maximum element in a set.
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min(s) > max(d). If ¢ is implemented using an array, then O(g) amount of space will
be wasted. In practice, this amount is often significant, and there is no easy method to
minimize the number g. If ¢ is implemented using a dynamic data structure, then at least
the performance of access to the set d within ¢ is compromised, for since the cell key-space
is static, then all its tables should be implemented with the fastest possible data structure.
Relying on static analysis to automatically split ¢ is not possible since its domain could

change at run-time.

Proposition 5.11 Given a table ¢, and a key-space K in the KyR model, if kdom(¢, K)
is not empty, then it is required that kdom(¢, K') = dom(t). This is called the key-table

placement restriction. It effectively assigns each table to an owning key-space.

Remark 5.11 Another reason for imposing the key-table placement restriction is to have
a programming interface that allows the program analysis procedure to recognize a static

key-space (refer to Proposition 5.3 and section 5.3.3).

Corollary 5.1 Givenarulet < sy, s9,...,S, and akey-space K, let c denotes the context
of the rule. If ¢ = dom(s;) A dom(ss) A ... A dom(s,), and ist(c, K) is not empty, then

ist(c, K) = c.
Remark 5.12 The current rule context in the Loci framework is defined as in the Corol-

lary 5.1, thus the result would apply to all Loci rules.

Corollary 5.1 suggests that under the key-table placement requirement, the effects of

the key-spaces concept can be viewed as to partition the rules into different groups and
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process them differently (since the rule context now equals the rule itself). Such a view
leads to another annotation in the programming interface, i.e., a rule must be properly
tagged with the key-space that it belongs to. Codelet 5.3 shows the general form of such
annotation. In order to save some typing, I also propose a concise form of key-space
tagging for rules, shown in Codelet 5.3 from line 5. These preprocessor directives are not

yet implemented, but will be used to illustrate the programming.

Codelet 5.3 Example Rule Annotation

$rule pointwise(source<-target),

1
2 keyspace_tag("ParticleSpace"), keyspace_dist() {

3 // define computation

4}

5 $keyspace_tag("ParticleSpace") {

6 $rule pointwise(targetl<-sourcel) { /* ...... x/ }
7 $rule apply(target2<-source2) { /+ ...... %/ }

8 /] e

9 }

In reality, such key-space annotation in a rule can be largely avoided since a careful
analysis by the system can deduce a rule’s key-space ownership based on the initial key as-
signment in all the tables and the rule dependence information. Such annotation is imposed
nevertheless to be more convenient and as an aid to the current implementation. There is
another rule annotation that is allowed. It is shown in line 2 in Codelet 5.3. It instructs the
system to consider a key-space topology evaluation after the rule. This annotation is added
to give extra controls to the programmer. Normally one does not have to interfere the key-

space topology evaluation activity. Once the key-space declares its topology parameters,
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the system will monitor them and perform appropriate evaluation accordingly. Such man-
ual annotation allows additional flexibility should the programmer consider it necessary to

evaluate the key-space topology regardless of the status of its critical structures.

5.3.3 Recognizing Static Key-space From Rule Analysis

This section will show how to recognize a static key-space from a program analysis
based on the current key-space programming interface design. Although the current in-
terface design allows the specification of key-space dynamism at its definition time (an
example is given in Codelet 5.1), the procedure outlined in this section can be used in an
implementation to determine the key-space dynamism automatically, or be used to check

the specification.

Proposition 5.12 By Proposition 5.11, each table’s domain must belong to exactly one

key-space. Suppose table dom(¢) is within a key-space K, then we say K owns t.

Proposition 5.13 Given a table ¢ and its owning key-space K, if ¢ is not K’s tunnel, then
Kownst — s; — ... — sp,(n > 1), inv(¢) and sy ...s,. If t is K’s tunnel, then by
Proposition 5.8, ¢ has its source and target key-spaces specified. K is surely ¢’s source
key-space. Assume P is t’s target key-space. Then K ownst — s; — ... — s,, and P

owns inv(t) and g ... S,.

Proposition 5.14 Given a rule: t < s1,59,...,s,, if key-space K owns s1, Sg, ..., Sp,
then K also owns t. Otherwise if sq, s9, ..., s, are owned by more than one key-spaces,
then ¢; is not owned by any key-space.
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Proposition 5.15 Given arule: (m — t) < s1, Sa, ..., Sy, if key-space K owns 1 ... s,
and m, then the ownership of the rule’s target variable ¢ can be determined according to
Proposition 5.13. If s; ... s,, and m are owned by more than one key-spaces, then ¢ is not

owned by any key-space.

Proposition 5.16 Given a key-space K, checking through all rules and if all maps or
multimaps owned by K appearing in a join sequence: t; — ... — t; — m — p; — ...]pj,
1 > 0,7 > 0 do not appear in any rule head, and there is no “insertion” and “destroy”

rules tagged as in K, then K can be determined as a static key-space.

Remark 5.13 All the above procedures are based on the KyyR model properties and the
programming interface design described in Proposition 5.8, Proposition 5.10, Proposi-

tion 5.11, Corollary 5.1, and the key creation and destruction rules in section 5.3.1.
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CHAPTER 6

PROGRAMMING PARTICLE TRACKING USING THE KyR MODEL

It is useful to see how the cell-dec and dual-dec approaches are actually implemented
using the KR model and its rule programming interface. This section presents both de-
signs in the Loci framework with the newly developed key-space concept. The cell-dec
implementation does not support the automatic mesh repartitioning (manual mesh repar-
titioning is however supported) since the present implementation of the KyyR model does
not yet support key-space topology for a static key-space. The dual-dec code makes full
use of the concepts and programming interfaces developed in chapter 5. These code exam-
ples serve as small documents on how the programming interfaces are used in developing
real problem solutions. They also serve to illustrate the actual simplicity of the program-
ming interface and that it has largely removed the complexities in the parallel program-
ming process. Since the cell-dec code implementation only uses a subset of the model
and programming interface that is equivalent to the original Loci framework, the compar-
ison of the two codes can also show that the newly designed programming interface keeps
the original style and feature, and that it is really a superset of the original one and is in
fact compatible with the original Loci framework. Any valid previous Loci program is
still a valid program in the new model and programming interface. In order to simplify

the code presentation, only the particle location search is presented here. Though the nu-
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merical computation on particle is not presented, it has a similar structure and does not
differ too much from the particle geometric search implementation. In the end, these two

implementations are compared.

Figure 6.1

Mesh Data Organization

Before describing the actual implementation, it is useful to first introduce how the
mesh data structures are organized in practice. In reality, the mesh data structure are not
always organized based on cell. A useful mesh format is to use a face based data structure.
This approach directly aligns the data organization with many common algorithms used
in numerical simulations. In such a mesh organization, the basic mesh topology is stored
in five Loci maps. These are the “c1”, “cr”, “upper”, “lower”, and “boundary” maps.
Figure 6.1 shows a three dimensional view of the c1 and cr data structure in the right part.

In the mesh format, all the face (edge in 2D) nodes are arranged by a specific ordering,

that is, when using the right-hand rule, the normal of the face would point away from the
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left cell and into the right cell. In addition, all boundary faces have a normal pointing

out of the boundary, which means that the left cell is the one on the boundary and the

right cell does not exist (because it falls outside the boundary). The left cell is stored

in c1 and the right cell in cr. When we inverse cl, we get a multimap named upper.

The same procedure applies to multimap lower and it comes from the inversion of the

map cr. The specific reason for such an arrangement of data structures is to associate the

matrix non-zero structure occurred in many numerical algorithms directly with the mesh

data structure. The multimap boundary is obtained from the mapping of the cell to mesh

boundaries. Table 6.1 provides an example of such data structures based on the left part in

Figure 6.1. Although the mesh is two dimensional, the organization would still apply.

Table 6.1

Mesh Data Structures Setup

cl cr upper lower boundary

k r k r k r k r k r
0 a 2 c a 0 a 4 a I}
1 b 4 a b 1 a | 11 b I}
2 b 5 c b 2 c 2 f I}
4 b 9 d b 4 c 5 : :
5 d 10 | f e 9 d 9
8 f 11 | a e | 10 10
9 e : e | 11 :
10 | e :
11 e
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Given such a mesh topology, we can conveniently retrieve any structural information.
For example, given a cell whose key is &k, we can look into all of the entries in upper[k]
and lower[k] to get all of its interior enclosing faces (edges in 2D). While boundary[k]
will give us whether the cell is located on the boundary, and how many of them (usually
one, unless in a corner). Such information can be readily verified from Table 6.1. Also
since cl and upper are inversion to each other, and so is true for cr and lower, then
given a cell we can find all of its neighbors through lower->cl and upper->cr. This
also illustrates a use of composition. Instead of creating a special neighbors map, we can
compose existing ones to achieve the purpose, and it is a better solution approach. Note,
the key assignments in Table 6.1 for all the cells are alphabetical. This is mainly for clarity

and illustration purpose. In reality, we would assign all of them as integers.

6.1 A Cell-dec Implementation

Given the mesh data structure organization, we are ready to declare all the major
datatypes used in the implementation of the cell-dec approach. Codelet 6.1 defines a util-
ity structure, the three dimensional vector type with two of its operations, and a particle
type, which in this case only contains its position and velocity data. The “cross” and
“fmn” fields in the particle structure will be used later and shall be clear from the source
code presented later. Codelet 6.2 contains all the datatypes pertain to Loci in the cell-dec
program.

Figure 6.2 illustrates the structure of the cell table in the cell-dec program. Since a

cell can contain multiple particles at a given time, all its particles are linked together as
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Codelet 6.1 Utilities Definition

1 struct Particle { struct Vec3d {

2 Vec3d pos,vel ; double x,v,z ;

3 int cross ; Vec3d(double xx=0,

4 char fmn ; double yy=0,double zz=0)
5} x(xx),v(vy),z(zz) {}

¢ inline double Y

7 dot(const Vec3d& vl, const Vec3d& v2) {

8 return vl.x»xv2.x + vl.y*v2.y + vl.z*v2.z ;

9 }

10 inline Vec3d

11 operator-(const Vec3d&vl, const Vec3d& v2) {

12 return Vec3d(vl.x-v2.x, vl.y-v2.y, vl.z-v2.z) ;

13 %}

Codelet 6.2 Major Cell-dec Type Declarations

$type cl, cr Map ;

$type upper, lower, boundary multiMap ;

// cc = cell center, fc = face center, fn = face normal
$type cc, fc, fn store<Vec3d> ;

// these are the major stores for particle values

$type ps, pw, pl, pc store<std::list<Particle> > ;

o L A W o —
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a list. Therefore the declaration of the stores that contain particles in Codelet 6.2 has
the “std::1ist” type in the template. Codelet 6.2 declares four major particle stores.
The need of multiple such stores will be clear from the tracking code presented later. In
Codelet 6.2 we are only declaring the effective store names, it is by no means that there
will be four distinct copies of tables created. It is up to the Loci framework and the later
development to determine the numbers of real physical data copies. This shows that we

are programming at a conceptual level.

cells particles
15
16 'l-.nl‘:: "”’,
tracking :'
17 ”'...llllllllll“‘
s O>O
19

key — value

Figure 6.2

Cell-dec Cell-particle Structure Organization

Given these definitions, we are ready to implement the particle walking algorithm.
Codelet 6.3 defines an auxiliary function that tests if a particle should cross a face. The
flip test in line 5 is necessary to ensure that the face normal vector points outward and

away from the cell center. Refer to Figure 4.12 for the visualization. This implementation
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Codelet 6.3 Particle Face Test

1 bool // auxiliary function tests a particle and a face
2 cross_face(const Vec3d& pos, const Vec3d& cc,

3 const Vec3d& fc, const Vec3d& fn) {

4 Vec3d vl = pos - fc ; Vec3d aux = cc - fc ;

5 double flip = (dot(fn, aux)<0) ? 1.0 : -1.0 ;
6 if(dot(vl, flip*fn) > 0) return true ;
7 return false ;
8

}

is not a direct correspondent to Algorithm 4.1 because the data structure organizations are
different.

Codelet 6.4 presents the source code for the complete particle in cell test. This code
corresponds to the while loop (one location step) in Algorithm 4.3. The intention of the
rule in Codelet 6.4 is to split the source particle store “ps” into “p1” (located particles) and
“pw” (still locating particles). The “{n}” structure attached to these names indicate that
they are in an iteration named “n” and the rule is defining computation for this iteration.
The “inplace” usage in line 3 is an indication to rename ps to pw at the end of the rule.
This is done for performance reasons. The normal behavior without the inplace clause
is to copy ps to pw, but renaming it avoids unnecessary copy overhead. This is roughly
the only annotation used in the present Loci framework to indicate where performance
optimization might be necessary. As discussed in the chapter 2, such control indications
from programmers are sometimes needed.

Also notice that the particle face testing order used in Codelet 6.4 is important. The
code first tests the upper and lower faces, the boundary faces are tested in the last step.

The reason for such a testing order is that the particle face crossing test may suggest
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Codelet 6.4 Cell-dec Particle-cell Location

1 $rule pointwise(pl{n},pw{n}<-ps{n},cc,

2 (upper, lower,boundary)->(fn, fc)),

3 inplace(pw{n}|ps{n}) { // rename ps to pw

4 std::list<Particle>::iterator 1i2, 1i = $ps{n}.begin() ;

5 while(li !'= $ps{n}.end()) {

6 for(int i=0;i<S$upper.size();++i) {

7 if(cross_face(li->pos,$cc,$upper[i]->$fc, $upper[i]->$£n))
8 li->cross=i, li->fmn="u’, ++1i, continue ; }

9 for(int i=0;i<$lower.size();++i) {

10 if(cross_face(li->pos,$cc,$lower[i]->$fc,$lower[i]->$fn))
11 li->cross=i, li->fmn='1’, ++1i, continue ; }

12 for(int i=0;i<$boundary.size();++i) {

13 if(cross_face(li->pos, $cc, $boundary[i]->$fc,

14 $boundary[i]->$fn)) // remove particle

15 1li2=1i, $ps{n}.erase(li), li=++1i2, continue ; }

16 1i2=1i ;// particle located

17 $pl{n}.splice($pl{n}.end(), $ps{n}, 1i) ; li=++1i2 ; }}

multiple faces to cross. If there is an interior face that can be crossed, we need to cross that
first since crossing a boundary face means the particle falls outside and will be removed.
If a particle moves, we record the crossing face information in the cross and fmn data
fields for later use.

Codelet 6.5 shows the code for particle transfer. It computes the store “pc,” which
contains the particles that are still searching their containing cells, but have been sent to
the correct cells for the next search step. The rule tail of the apply rule contains pw, which
implies a dependence relation to the code defined in Codelet 6.4 (since pw is generated
by the rule in Codelet 6.4). Since the store pw contains particles that fall outside of their
current containing cell and are still in the previous cells, transferring them to the neighbor

cells will give pc for the next search step. A reduction operation is used to define such
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Codelet 6.5 Cell-dec Particle-cell Transfer

1 $rule unit(pc{n}) { $pc{n}.clear() ;} // identity list value
2 // a list merge operator

3 template<class T> struct ListMerger { using namespace std ;
4 void operator()(list<Particle>& r, const Particle& s) {

5 r.push_back(s) ;}} ;

6 // the real reduction rule to transfer particles

7 $rule applyv(lower->cl->pc{n}, upper->cr->pc{n}

8 <-pw{n}) [ListMerger] {

9 std::list<Particle>::iterator 1i2, 1i = $pw{n}.begin() ;

10 while(li !'= $pw.end()) {

11 if(li->fmn == ’u’) { // look-up previously stored

12 join($upper[li->cross]->$cl->$pc{n}, *1i) ; ++1i ;
13 } else if(li->fmn == ’1’) { // map id and cross id
14 join($lower[li->cross]->$cr->$pc{n}, =*1i) ; ++1i ;
15 } else throw Error("particle fmn error!") ; }}

transfer (i.e., each cell contributes particles to their neighbors). As discussed previously in
this section, the composition of the maps lower->c1 and upper->cr can be used to reach
all neighbors of a given cell. An associative operator for list merging is also defined in the
code.

Codelet 6.6 contains implementation on the location iteration setups. The “{n=0}"
notation attached to each variable is a mean to cause initialization of the corresponding
store at the beginning of iteration n. The “{n+1}” notation attached to each variable is
a way to define how to advance such an iteration. This is an inductive definition of an
iteration and is the major expression of loop in the Loci programming interface. The
iteration terminate condition is defined in Codelet 6.7. If there is no particles contained in
the store pw (particles moving) at each step, then we can stop the location process. The

“conditional” clause in line 13 signals the rule’s effectiveness is based on the condition
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Codelet 6.6 Cell-dec Location Iteration Setup

// initialize iteration {n}, plocate is the initial particles
$type plocate store<std::list<Particle> > ;

$rule pointwise(ps{n=0}<-plocate),inplace(ps{n=0}|plocate) {}
// pll is the accumulated particles located in {n}

$type pll store<std::list<Particle> > ;

$rule pointwise(pll{n=0}<-plocate) { $pll{n=0}.clear() ;}

// define the advance {n+1} <- {n} action

// communicated particles continue to search

$rule pointwise(ps{n+1}<-pc{n}),inplace(ps{n+1}|pc{n}) {}

// located particles in {n} get accumulated

11 $rule pointwise(pll{n+1}<-pll{n},pl{n}),

12 inplace(pll{n+1}|pll{n}) { $pll{n+1}.

13 insert($pll{n+1}.end(),$pl{n}.begin(),$pl{n}.end()) ; }

O 00 N AN W R W =

—_
o

Codelet 6.7 Cell-dec Location Iteration Terminate

// determine if all particles are located

$type nlp param<int> ;

$rule unit(nlp{n}) { $nlp{n} =0 ; }

$rule apply(nlp{n}<-pw{n}) [Loci::Summation] {
join($nlp{n}, $pw{n}.size()) ; }

// define the condition to terminate iteration {n}

$type finished param<bool> ;

$rule singleton(finished{n}<-nlp{n}) {
$finished{n} = (0 == $nlp{n}) ; }

// define what to do on termination of location loop {n}

// all accumulated located particles get renamed

$type plocated store<std::list<Particle> > ;

$rule pointwise(plocated<-pll{n}),conditional(finished{n}),
inplace(plocated | pll{n}) {}

O 0 N AN W R W =
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indicated. Another reduction rule is used to compute the number of particles that are not
yet located. The apply rule in Codelet 6.7 pushes one for each particle into the counter
“nlp” through the summation operation.

Codelets (6.1 — 6.7) constitute the major implementation of the particle location search
in the cell-dec approach using the Loci framework. These are not pseudocode however,
they are real legitimate Loci source codes and can be readily compiled and run if the
missing pieces are supplied. It can be seen that it is very succinct to write parallel programs
in Loci utilizing the KyR model and its rule programming interface. These codes are
completely oblivious to the parallelism. And they are also oblivious to the rule context.
Each of the rules is defined with a single cell in mind. The final execution context of
each rule is calculated by Loci. In addition, the essential dependence of the composition
is documented through the rule signatures, there is no need to supply a driver function to

manually combine them together.

6.2 A Dual-dec Implementation

Codelets (6.8 — 6.13) present the program source code for the particle location search
in the dual-dec approach. This new implementation achieves the same functionality as
those codes presented in Codelets (6.1 — 6.7), but makes use of the new key-space concept
and programming interfaces. The particle key-space definition has already been discussed
in Codelet 5.1. This section will present the basic algorithms and program organization.
They are mainly the same as the cell-dec code presented early, the major difference is the

code in this section treats the particle as keys instead of values.
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Codelet 6.8 Main Dual-dec Type Declarations

1
2
3
4
5
6
7
8

struct RefParticle { // this types is used in
Vec3d pos, vel ; // key creation
Key cell ; } ;
$type cl, cr dMap ; // notice all are now "dContainers"
$type upper, lower, boundary dmultiMap ;
$type cc, fc, fn dstore<Vec3d> ; $type pdy param<bool> ;
$type ppos dstore<Vec3d> ; $type p2c dMap ;
$type plr, prr dstore<bool> ; // used to help key destruction

Codelet 6.8 similarly declares the major datatypes used in the new formulation. The

new particle structure defined from line 1 is not the structure used in the main computation.

It is instead used as an auxiliary datatype in particle creations. In the dual-dec method,

since particle themselves are keys, there is no need to define a special datatype for particle.

Another note is that in Codelet 6.8, all of the stores and maps now become “dtype’”s. As

mentioned before, this is required for any table defined in a dynamic key-space. The

rationale behind such a choice is outline in section 7.1.

Proposition 6.1 The table type declaration in a dynamic key-space follows these rules:

1. Any store or map directly owned by a dynamic key-space should be declared as the

corresponding “dtype.”

2. Any store or map accessed through the key-space tunnel is also declared as its cor-

responding “dfype” (no matter which key-space it belongs to).

Example 6.1 For example, the map “p2c” belongs to the particle key-space, which is

dynamic. Therefore its type must be dMap. Suppose we intend to access a cell key-space

(assuming static) store named “temp” through the particle key-space tunnel p2c->temp,

then temp needs to be declared as “dstore” in any particle key-space rules despite that

temp is declared as “store” in the cell key-space.
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Codelet 6.9 Dual-dec Particle-cell Location

$keyspace("ParticleSpace") { // key-space tag
$rule pointwise(plr{n+1},prr{n+1},p2c{n+1}<-p2c{n},ppos{n},

/+reference to*/ p2c{n}->(upper,lower,boundary)->(fn,fc),

/* cell space */ p2c{n}->lower->cl,p2c{n}->upper->cr,

/* via tunnel %/ p2c{n}->cc,plr{n},prr{n}),
inplace(p2c{n+1}|p2c{n}), // rename results for efficiency
inplace(plr{n+1}|plr{n}),inplace(prr{n+l1}|prr{n}) {
if($plr{n}) return ; // located particle, just quit
for(int i=0;i<$p2c{n}->$upper.size();++i) {

if(cross_face($ppos{n},$p2c{n}->$%cc,
$p2c{n}->$upper[i]->$fc,
$p2c{n}->$upper[i]->$£fn))
$p2c{n+1}=%$p2c{n}->$upper[i]->$cr, return ; }
for(int i=0;i<$p2c{n}->$lower.size();++i) {
if(cross_face($ppos{n},$p2c{n}->$%cc,
$p2c{n}->%$lower[i]->$fc,
$p2c{n}->$lower[i]->$fn))
$p2c{n+1}=%$p2c{n}->$lower[i]->$cl, return ; }
for(int i=0;i<$p2c{n}->$boundary.size();++i) {
if(cross_face($ppos{n}, $p2c{n}->$cc,
$p2c{n}->$boundary[i]->$fc,
$p2c{n}->$boundary[i]->$fn))
$plr{n+l}=true, $prr{n+l}=true, return ; }
$plr{n+l} = true ; }}
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Codelet 6.9 is the main implementation for the particle location search. It reuses the
utility function “cross_face” defined in Codelet 6.3. Unlike the cell-dec implementation,
which uses two steps (the locate step (Codelet 6.4) and the transfer step (Codelet 6.5)),
this dual-dec implementation only uses a single step to achieve the particle location. This
is due to the fact that particles are being treated as keys, therefore there is no need to
transfer them. This single rule definition in Codelet 6.9 also serves as the particle location
iteration advancing step definition. Basically it calculates a new particle to cell map from
the old one based on the faces particles crossed in a single search step. In addition, it also
generates two auxiliary stores “plr” and “prr” to represent the particle location results
and particle removal results respectively. These two stores act as tags to mark the single
step search results. The use of these two flags is resulted from the requirement that keys be

created and deleted in a dedicated rule. See the discussions from section 5.3.1 for details.

Codelet 6.10 Dual-dec Particle Destruction

1 $keyspace("ParticleSpace") {
2 $rule destroy(pdy<-prr) {

3 if($prr) destroy_key($k) ;
4 1}

Codelet 6.10 shows the particle key removal code. It is a special destroy rule discussed
in section 5.3.1. It takes the source from the prr store, which records the particle deletion
information. Its target is a special flag variable in the type of param<bool> used to indicate
the completion of this rule. Its use will be clear in the later part of the code. Also notice

that all the variables in the rule do not have the iteration identifier {n} attached. Such a
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Codelet 6.11 Dual-dec Particle Creation

1 $keyspace("ParticleSpace") {
2 $type pinject store<RefParticle> ; // particles injected
3 $type pstream blackbox<std::vector<RefParticle> > ;

4 $rule blackbox(pstream<-pinject) {

5 $pstream.insert($pstream.end(),

6 $pinject.begin(), $pinject.end()) ; }
7 $type p2c_new dMap ;

8 $type ppos_new dstore<Vec3d> ;

9 $rule insertion(p2c_new,ppos_new<-pstream) {

10 $p2c_new = $pinject.cell ;

11 $ppos_new = $pinject.pos ; }}

rule is named “‘stationary time rule” in the Loci framework. It can be scheduled to any
iteration that requires the result. Such rules are also part of the Loci framework’s strategy
to encourage code reuse.

Codelet 6.11 presents the particle creation. It is achieved by using the special insertion
rule type. As a requirement, there can be only one source for the insertion rule and its
type be that of any blackbox<SeqContainer>. In this case it is an std: :vector. The
rule in line 4 is used to collect the newly created particles into the required data format. In
this case it is needed because the particles are created as values (similar to that in the cell-
dec approach) by another boundary condition code. It is also possible to create particles
directly to bypass the data format conversion step. The rule type blackbox in line 4 is a
special rule that generates a blackbox type that is required for the insertion rule.

Codelet 6.12 contains the code for the termination condition of the particle search
iteration. It is essentially the same as the source code in Codelet 6.7. The code computes

the number of particles that are not located and terminates the iteration when all of the
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Codelet 6.12 Dual-dec Particle Location Loop Exit Condition

1 $keyspace("ParticleSpace") {

2 $type nlp param<int> ;

3 $rule unit(nlp<-pdy) { $nlp = 0 ; }

4 $rule apply(nlp<-plr) [Loci::Summation] {
5 if(!'$plr) join($nlp{n}, 1) ; }

6 $type finished param<bool> ;

7 $rule singleton(finished{n}<-nlp{n}) {

8 $finished{n} = (0 == $nlp{n}) ; }}

Codelet 6.13 Dual-dec Particle Location Loop Setup

1 $keyspace("ParticleSpace") {

2 $type p2c_locate dMap ;

3 $rule pointwise(plr{n=0},prr{n=0},p2c{n=0}<-p2c_locate),

4 inplace(p2c{n=0}|p2c_locate) {$plr{n=0}=$prr{n=0}=false ;}
5 $type p2c_located dMap ;

6 $rule pointwise(p2c_located<-p2c{n}),

7 conditional (finished{n}),inplace(p2c_located|p2c{n}) {} }

particles are located. The only difference is in line 3. Notice the particle deletion rule flag
“pdy” is used to ensure the removal of particles before counting. However this is only a
design choice since the removed particles do not affect the counting, it can be placed in
other places in the code. Codelet 6.12 shows one of its usages. Codelet 6.13 shows the
rest of the setup for the particle location search iteration. They are presented for the sake
of completeness for the code.

It can be seen from Codelets (6.8 — 6.13), programming in the new key-space interface
for the dual-dec design is not much different than programming the cell-dec approach in
Codelets (6.1 — 6.7). Both source codes have similar size and use the similar structure. The

essential difference from the two codes only comes from the different treatment of particle
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removal. The definition of the particle key-space (shown in Codelet 5.1) is probably the
most significant effort involved in the new programming interface.

In terms of software structure, the dual-dec code presented in this section do have some
advantages over the cell-dec code. In the cell-dec code, since particle is treated as value,
its entire definition is enclosed in a structure. This makes the source code evolution and
maintenance harder. For example the particle type declared in Codelet 6.1 only contains
minimum information about a particle. As the physics model become more complex,
more data fields will be expanded in the particle type declaration. These data fields will
end up being hard-wired into the source code dealing with physics. There is no easy
way to separate the various parts from each other. As a result, upgrading the particle
model requires one to manually search through the corresponding source code and perform
necessary changes, which is inconvenient and error-prone. In the dual-dec code, the code
structure is more flexible. Since particles are keys and can own arbitrary values and refs,
one can always define new data associated with particles as the physics models evolve and

let the Loci framework compose the program.
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CHAPTER 7

A DYNAMIC KEY-SPACE IMPLEMENTATION

7.1 Implementation Strategies

This section will focus on the implementation strategies for a dynamic key-space and
its interaction with other key-spaces. The implementation of a static key-space without the
key-space topology support is already covered by the current Loci framework. Recall from
section 3.3, there are two fundamental steps in the current Loci implementation strategy:
the graph processing and the key-sets manipulation. The graph processing step is used to
resolve rule dependence relations and to break the entire program into functional blocks.
The key-sets computation is used to resolve rule context information and to generate the
parallel communication subroutines.

Recall that the key-space concept developed in chapter 5 can be viewed as a layer
added on top of the current KR model (from Corollary 5.1). Its functional purpose in the
system can be viewed as further partition of the rules into individual key-space and then to
be processed according to the key-space definition. Thus the basic strategies illustrated in
section 3.3 and in Figure 3.2 remain the same, and all of them are compatible with the new
key-space concept. For a dynamic key-space implementation, there are two new additions

to the steps outlined in Figure 3.2: 1) In the graph processing stage, in addition to partition
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the rules into a DAG hierarchy, these DAGs are further partitioned into blocks of rules that
are in the same key-space. 2) The last step in Figure 3.2 is repeated at run-time and that
the analysis become per rule (a single block in the list in Figure 3.2) based instead of based
on the entire list as in the current Loci implementation.

Recall from section 5.3.2, since all the rules in a dynamic key-space are annotated, it
is then easy to group them into a separate block in the DAG hierarchy. This step is only
performed once at the beginning of the scheduling step and the cost is generally negligible.
The second step outlined presents a major challenge since it is invoked repeatedly at run-
time and its cost is in general non-trivial. Its necessity can be illustrated via a visualization

of the KyR model.
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Figure 7.1

Static Key-space View

Figure 7.1 presents a view of a static key-space mapped onto the KyR model. The
nodes in the figure denote “key,” the edges represent the “ref” relation, and the rectangle

tag on each node is the “value” associated with “keys.” Essentially in such a static key-
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space, the “key” and “ref” parts of the model are fixed, only the “value” part of the model
is evolving at run-time. If we view the “key” and “ref” part of the model as a tree, then the
connectivity of such a tree never changes through out the entire application. This property
allows more opportunity to optimize the key-space. Because we can “see through” the
entire tree structure, the tree can then be processed in an entirety, for example, we can
traverse it from top to the bottom in one process, and from the bottom to the top in an-
other process. Such traversals allow the collection of various information to have a global
analysis. In a static key-space, this is not only possible but also worth the cost as such per-
formance optimization can have a lasting effect throughout the entire program execution

and can easily amortize the global analysis cost.

Value:50

Value:103]

Value:102
Value:101

Value:101

I\/’alue: 1()(]| I\/’alue: 1()()' IVa‘luc: 1 UZSI I\/'aluc: 100|

Value:53

Figure 7.2

Dynamic Key-space View

Figure 7.2 presents a view of a dynamic key-space mapped onto the KyR model. In
this situation, each part of the KyR model is possible to change. This effectively made

the tree structure volatile: the nodes in the tree can disappear and reemerge, the edges that
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connect individual nodes can be reconfigured. Many of such dynamism depends on the
run-time computation results and is not possible to predict. Thus we lose the capability
to see through the entire tree structure and in turn, the processing of such a tree can only
be per node based.! This amounts to the per rule processing strategy used in the dynamic

key-space implementation discussed here.

Algorithm 7.1 Single Rule Compilation in a Dynamic Key-space
Require: a Loci rule and its key-space info.

Ensure: proper execution of the rule

pre-processing

data expansion for joins

rule context evaluation

rule execution

post-processing

AN e

Algorithm 7.1 illustrates the basic steps involved to process a rule in a dynamic key-
space. Line 4 in the algorithm represents the rule body defined with each rule. The pre-
processing step sets up necessary data structure, while the post-processing step performs
clean ups that may become needed. In some cases, the results may need to be reduced to
all processes. This is also performed in the post-processing step. The discussion provided

here will focus on the two major steps shown in lines 2 and 3. The expansion phase in

Tt is possible to recognize sub-trees that can be processed as a whole. Aside from the complexity of
such analysis, its real benefit is unknown as the complexity of run-time sub-tree processing may outweigh
its optimization capability. Evaluating such strategies will become a future research work. However the
present strategy can already be regarded as sub-tree processing as the static and dynamic key-spaces are
partitioned into different sub-trees and are processed differently. This can be regarded as the major purpose
of the key-space concept: without the key-space abstraction, a single dynamic tree component will force the
entire tree to be processed sub-optimally. Another way to look at optimization is to recognize the stasis time
(Definition 5.12) of a dynamic key-space, i.e., the time period in which the tree connectivity is fixed. Then
during such a time period, the tree can be processed as a whole to enable more aggressive optimization.
However the same problem as in the sub-tree processing can occur, i.e., to determine whether the stasis time
is long enough to warrant the potentially expensive optimization steps.
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line 2 analyzes a rule’s signature and resolves all the join (“—”) operators that invoke par-
allel data movement. In a static key-space, this parallel communication schedule would
be generated just once and can be optimized globally within the entire application. The
context evaluation step in line 3 finds all the keys in the key-space that can be applied
to a rule. Again in the static key-space, this step is only evaluated once and is globally
optimized within the entire application. The basic algorithms and details for these steps
remain the same as those used in the static key-space (described in detail in the past pub-
lications [33, 54]) and are hence treated as black boxes here. The focus of this discussion
will be on a infrastructure that can adequately reduce the run-time cost associated with
these essential steps as in a dynamic key-space global optimization is no longer available

and these steps are evaluated multiple times at the run-time.

7.1.1 The Dynamic Data Expansion Infrastructure

The dynamic data expansion infrastructure is designed to implement the data expan-
sion phase defined in line 2 in Algorithm 7.1. Its purpose is to reduce the frequency of
parallel data communication to the minimal while ensuring the correctness of the program.
The general strategy outlined in Algorithm 7.1 implies that the data expansion phase will
be performed every time a dynamic key-space rule is scheduled. This is however not
always necessary if we allow communicated data to be cached properly.

Consider an example shown in Figure 7.3. This example shows the dependence rela-
tion between two rules and their placement in the entire program. Rule 1 generates y that

is consumed by rule 2, and they are also in different iteration hierarchies. Suppose rule 2
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Figure 7.3

An Example Rule Dependency for Parallel Data Expansion

is in a dynamic key-space and its use of y is from a join operation. Thus y needs to be
communicated properly to include all accessible data from all remote parallel processes
before rule 2 can proceed. According to Algorithm 7.1, such parallel data retrieval occurs
whenever rule 2 is encountered. Since rule 2 is inside loop 2, the iteration bounds will
determine the number of times to invoke the parallel data communication on y. However
we can observe that since y is generated by rule 1 in loop 1, its value is fixed throughout
the lifetime of loop 2. Therefore the y value communicated from all processes is always
valid within loop 2.

This observation suggests we can cache all parallel communicated data for dynamic
key-space rules. The subsequent communication point (as line 2 in Algorithm 7.1) only
needs to check whether the data cache is valid or not and only initiates the communication
whenever the data cache is not valid. This also suggests we need a mechanism to invalidate

the parallel data cache. The need for cache invalidation is obvious. Consider the example
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in Figure 7.3 again, if loop 1 is rerun, then y would be recomputed and thus needs to be

communicated across all the parallel processes again for rule 2.

Figure 7.4

Parallel Data Expansion Cache and Invalidation

Figure 7.4 shows the general strategy used to cache parallel data expansion and its
invalidation. We can insert a cache invalidator as soon as new data is generated. We
perform a scan of all the dynamic key-space rules’ signature to identify all the variables
that need to have corresponding data cache invalidator. For example, we can identify all
the join operations used in a rule by searching ¢ty — ¢, — ... — ¢, in all the rules’
signature. In this case, all variables from ¢, to ¢,, will need to have data cache invalidator
for their parallel expansion. Subsequently the graph structure and the scheduling list are
modified to accommodate the new data cache invalidator.

Such a data cache strategy also handles dynamic join pattern and key-space distribution
automatically. For example in Figure 7.4, if rule 2’s signature is 2" ™! « (2" — y), then

such a join pattern becomes dynamic since z is evolving each time the rule is computed.
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Thus the expansion of y also becomes dynamic each time the rule is run. This case can
be treated as an automatic invalidation of the y cache used by rule 2. This has a nice
property that it only invalidates the necessary portion of y cache. For example, suppose
2" — y yields a key-set of {0-9} and 2" — y yields a key-set of {5—15}. Then only the
set {10-15} is needed to be expanded since the portion {5-9} is already expanded by the
previous expansions. A key-space distribution has the same effect of creating a dynamic
join pattern. Since the key/process ownership is shuffled during a key-space distribution,
the join operation would yield different key-set. This is handled in the data cache in the
same way that only the missing parts are further expanded.

The data expansion cache and invalidation strategy also allows the implementation of
various options. For example, the invalidator appended after a variable can selectively
invalidate its expansion cache. Still consider the example in Figure 7.4, if it is determined
that a portion of y is indeed the same in different iterations of loop 1 (e.g., the key-set
{2—4} can be determined to be the same as in the previous iteration), then such a portion
can be excluded from the invalidation. The incremental data caching strategy discussed
in section 4.4.2 can also be implemented within this infrastructure. Reusing the previous
example, suppose 2! — y yields a key-set of {0-9}, 22 — y yields a key-set of {5-15},
and 2® — y yields a key-set of {1,3-8,12-16}. The incremental caching will not purge
any of the old data expansion from the cache as long as the cache limit is not reached.
This allows the 22> — y expansion to reuse the data in key-set {1,3,4} without the need to

re-expand them. Note this works automatically with the cache invalidator. In the example,
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as long as y is valid, its expansion can always be cached. Once the y expansion cache is

invalidated, the incremental caching will automatically start off again.

7.1.2 Dynamic Rule Context Evaluation

The rule context evaluation outlined in line 3 in Algorithm 7.1 follows the same pattern
as the dynamic data expansion problem in the previous section. For a rule whose inputs
do not change, we do not need to evaluate its context again. Consider the example shown
in Figure 7.3, if rule 2 has a signature z «— ¥, then its context stays the same during
the lifetime of loop 2 since it depends on the domain of y, which stays fixed in loop 2.
Therefore the same caching and invalidation strategy used in the dynamic data expansion
infrastructure can be reused in the rule context evaluation.

Each dynamic key-space rule would cache its execution context until it is invalidated.
The invalidation setup follows the approach outlined in the previous section except for one
difference. In the dynamic rule context evaluation, there is only one cache for the entire
rule execution context. Any of the invalidation would invalidate the entire rule context
cache. This decision is used to conserve memory consumption for rule context cache.
Consider an example dynamic key-space rule with the signature: ¢ < sy, (sy — s3 —
S4), S5, (8¢ — s7). If only s7 invalidates its context, then the most efficient way to reeval-
uate the rule context is to reevaluate the portion s¢ — s7 and then merge the result with
the other portions. However this would also mean to store individual context information
for each individual variable in the rule signature and each portion of the rule signature

(e.g., S — s3, s3 — S4 etc.). Storing all these contexts as key-sets will consume a large
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portion of memory in practice. Thus there is only one context cache for any dynamic key-
space rule and any of its inputs context invalidation will cause the entire rule context to be

reevaluated.

7.1.3 Data Structure Choice

There are two data structure design choices in the dynamic key-space implementation.
The first one is whether to use a split storage or a unified storage when expanding data.
Consider an example where the domain distribution of a variable = on three processes is:
po: {0-5}, p1: {1518}, and po: {22-29}. Suppose in a parallel computation, the requested
x domain on pg is {1-3,16,25-28} (denoted as x"). Then for py, the remote domain that
needs expansion is {16,25—-28}, while the domain {1-3} is local and does not need to be
communicated in parallel. The data expansion routine, however, has two choices. One
way is to create an expanded variable 2 with the remote domain {16,25-28}. Therefore
the on po: " = x U x°. In this case, subsequent access to x" is split to x and z°. For
example, given a key 2, the assess should be made to x, while the access for key 20 should
be made to z¢. There is a cost associated in determining how to perform the split access.
The other way is to create ¢ with the remote domain {16,25-28} communicated from
other processes and the local domain {1-3} copied to z° as well. In this case, " = x° and
there is no split cost involved in data access. However there is an additional copy overhead
incurred when merging the local domain into z°.

The current implementation of the data expansion phase favors the second choice, i.e.,

using a unified data storage to avoid the split cost. The cost trade-off within the two choices
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are largely problem dependent. However an added benefit of the unified expansion storage
choice is that the programming logic is also simplified. Table 7.1 shows one particular
measurement to compare the cost trade-offs between the split and unified data storage
choice. The numbers in the “copy,” “total,” and “split tests” columns are summed from
all the participating processes. The last two column show the timing results from the
slowest process (to show the overall practical effects). The “copy” column shows the total
number of copies performed in the unified storage method. The “split test” column shows
estimated total number of range tests (i.e., determine if an integer falls in an interval [b, e])
performed in the split storage method in order to determine the split. The “total” column
is the total number of requested data items. Therefore the number in the “total” column
minus the number in the “copy” column is the data items that are communicated from
remote processes. The timing results in the last two columns include the copy, parallel

communication, and computation (with data access, split or not) time.

Table 7.1

Split vs Unified Data Storage Benchmark

data item size: 176 bytes
process | copy | total | copy ratio | splittests | split(s) unify (s)
32 217054 | 16009987 1.36% 365838405 50.3 46.8
64 182168 | 16196507 1.12% 295625345 35.3 32.2
128 82326 | 16496829 0.50% 99917370 21.7 22.0

The results in this particular case favors the unified storage approach. The copy ratio

in Table 7.1 indicates that only a small amount of data items are actually locally copied,
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the majority of the data items are communicated. This is not surprising as the test data
came from a simulation with a dual-dec implementation of the Lagrangian particle track-
ing problem. Such an effect is caused by the independent distribution of particles and
mesh cells, which causes most particles to refer to cells that are not local. Since problem
properties differ widely, the best strategy is to use an adaptive learning algorithm to select
the appropriate strategy for a specific problem setup based on run-time profiling results
or a guided learning process. This highlights an important future research area: the use
of run-time profiling based optimization. Some Al techniques may also be useful to aid
decision making in these situations.

Another choice of data structure relates to the use of static array based or dynamic hash
based container. In a dynamic key-space, keys can frequently be generated, destroyed,
and distributed. Therefore the containers that store key-value or key-ref pairs need to
accommodate such changes. Static array based container offers the fastest access time, but
is inflexible to insert and erase. Also to use array based container, we need to remap keys
in a compact form as discussed in section 3.3.2 lest fatal memory allocation problems. A
hash based container offers freedom in all these areas, but it is slow to access. The current
dynamic key-space implementation favors the use of hash based container. The reason is
that for a dynamic key-space, it is usually anticipated that the key creation and destruction
will be frequent. Thus the additional key management overhead for using an array based
container can easily outweigh the access speed benefit.

Table 7.2 assesses the data structure access performance. The measurements compare

timing results from accessing an array and a trie data structure. The trie structure is used
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Table 7.2

Array vs Trie Data Structure Access Benchmark

H access num \ array (s) \ trie (s) H

327797400 247.0 261.1
6555937500 474.5 518.0
13111864500 | 9449 | 10254

in the current dynamic key-space implementation as a replacement to hash table. Since
the keys in present abstraction is integers, the entire permutation of the available keys are
encoded in a three-level trie structure. Thus accessing associated data for a key in such
a data structure involves three bit processing and three pointer dereferencing. Ideally it
should be about three times slower than accessing an array based container. However
in reality, we never access a container alone. Often accessing containers is mixed with
interleaved computation on the accessed data. Thus in practice, the effects of choosing a
dynamic hash based container shall be measured in a real setting. The timing results in
Table 7.2 comes from a numerical integration routine within the Lagrangian particle code.
It represents the typical use of data access and computation. The results show that the trie
performance is within 10% of the array. This is indeed an acceptable number. Consider
the time that it saves in all the key management routine, this is actually superior than the
array based approach. Although individual problems differ, this example did suggest that
we reconsider the data structure choices in certain types of numerical computations where

dynamic structural change is frequently anticipated.
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7.1.4 Key Management

The key management in a dynamic key-space deals with key generation, destruction,
and distribution. For the purpose of key generation and destruction, a key manager is used.
Initially the available key-space is partitioned evenly for all the processes. For example,
if we use n-bit integer to represent keys and have p processes, then each process will get
% unique partition of the n-bit integer as the local key-space. The key manager on each
process then keeps a set of available keys for generation purpose. Any destroyed keys will
be recycled. Such a design has a potential drawback. Depending on problems, the rate of
key generation may not be the same on each process. Then some processes may exhaust
their available keys quicker than others. Dynamic balancing of keys among processes is a
solution. However this involves costly parallel operations. A better and simpler solution
is to keep this design and increase the available integer bits. For example, a 64-bit integer
is practically enough to handle any problem in the foreseeable future. When partitioning
a 64-bit integer in the key manager, we do not need to use the full 64 bits on each process.
A 32-bit local key-space is enough for distributed memory machines since the addressable
memory by a process is typically within 32 bits. Thus in such an environment, we can
never have a process running out of keys locally. The key manager on each process would
only need to record a 64-bit offset in the global space. All local operations can be done
within the 32-bit space. This not only saves memory storage, but also increases processing
speed.

Normally when generating or destroying keys, the key manager needs to perform a

parallel synchronization operation to gather all the key distribution information. For ex-
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ample, suppose on a three-process system, the initial key distribution follows: py: {0-9},
p1: {100-105}, and po: {200-207}. Such a distribution needs to be kept synchronized
on all the key managers since the distribution information is needed when resolving all
the join patterns in a rule. Suppose p, destroys {0,3,4} and p; generates {106}, then each
process will need to gather the new key distribution: py: {1,2,5-9}, p1:{100-106}, and ps:
{200-207}. This parallel communication step is costly if performed frequently. However

for certain dynamic key-space, an optimization can remove this gathering requirement.

Proposition 7.1 Given a dynamic key-space K, for all the rules in K, if every join se-
quence follow the pattern: t; ~ t, — t3 — ... — t,, then the key/process distribution

information in X does not need to be maintained.

Proof: Given a key-space K, for any of a join sequence inside a rule in K: ¢, ~ 3 —
t3 — ... — t,, let t denote the resulting table. Since the key-space tunnel is the first
variable appearing in the join, then according to Definition 3.15 and Proposition 5.10, the

iimg(¢, K) is empty. Thus all the keys within K are not affected. n

Remark 7.1 The particle codes presented in Codelets (6.8 — 6.13) satisfy this condition.

And indeed such optimization is used to schedule those codes.

The run-time key-space topology evaluation is handled by proper graph processing.
Recall from section 5.2.1, if a key-space has associated critical structure definition, then
its topology is subject to be reevaluated at run-time. Consider the early example shown in
Figure 7.3, if variable z is declared as the critical structure for the key-space that contains

rule 2, then a key-space topology check point will be appended after z. This is easy to
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justify: whenever a critical structure is recomputed, then the topology of the key-space

may changes, therefore we need to reevaluate it again.

7.2 Performance Evaluation

To evaluate the practical performance of the dynamic key-space implementation and its
interactions with the rest of the current implementation of the Loci framework, I continue
to use the Lagrangian particle tracking example discussed throughout this entire disserta-
tion. The dual-dec implementation is used to benchmark the complete dynamic key-space
implementation discussed in this chapter as it exercises most of the new programming fea-
tures created in chapter 5. The manual dual-dec code discussed in chapter 4 is used as
the basis for performance comparison. It is not only a realistic engineering application of

sufficient complexity, but also is a highly optimized parallel implementation.

7.2.1 Development Overview

Part of the manual dual-dec code is written utilizing the original Loci framework, par-
ticularly those parts that interact with the fluid field solver. All particle related codes are
developed manually using the MPI library with the C++ programming language. The
manual particle code has evolved for about one and half years. During this period of
time, it is rewrote several times and is extensively polished and optimized as we further
our understandings of the performance related issues, and the physics models used also
gradually matured. The core of the manual dual-dec particle code currently consists of

approximately 13861 lines of Loci and C++ code.
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A functionally equivalent core dual-dec Lagrangian particle tracking code is also de-
veloped using the new KVR model and the programming interface discussed in chapter 5.
(e.g., Codelets (6.8 — 6.13) presented in chapter 6 show a naive particle location search
implementation in the new programming abstraction). This new code (terms as the KyR
particle code hereafter) uses the same physics model and algorithms as in the manual code.
The manual and the KVR codes are verified to compute the same results for the same prob-
lem configuration. The new KyR particle code was developed in roughly three-week’s
time. Although much of the related design experience was shared with and borrowed from
the manual particle code. The new KVR particle code currently consists of approximately
6899 lines of Loci and C++ code, which is about half of the manual code length. As a
comparison, the manual particle code devotes approximately 7616 lines of code (mostly
programming in MPI and data structure management) in managing the parallel structure
and communication used in the particle walking algorithm and the particle-fluid coupling
model. All of these efforts are not necessary in the new KyR particle code. Only a 122
lines of particle key-space definition is created, and the rest of the code is mostly devoted
to the geometric and numerical algorithms and is also oblivious of parallellism. Thus
much of the accidental cost in the development is removed in the KR programming in-
terfaces. In addition, the new KyR particle code is more composable than the manual
particle code. For example, extending the physics model only requires the addition of new
rules, instead of going through the entire code base and modify each function and data

structure manually as is needed in the manual particle code.
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7.2.2 Run-time Performance Benchmark

To assess the run-time performance of the new KyR particle code, the same combustor
spray simulation as presented in section 4.5 is used. Two simulation scenarios are created:
the first one starts with no particles in the combustor, but large numbers of particles are
injected at each time step. The particles are only injected on a few parallel processes, thus
such a setting will cause significant imbalance of particle number at each time step among
all the participating processes, which in turn will trigger the key-space redistribution at
each of its topology check points. This setting also causes large amount of keys being
created at each time step, which also leads to intensive insertion operations in the trie data
structure used as the fundamental container in the dynamic key-space. Therefore this test
case is intended to expose the cost of rapid and frequent key creation and distribution. The
second test case starts from roughly twelve million particles in the combustor model and no
particle is injected during the simulated time steps. Thus the particle number will maintain
perfect balance during the simulation and no key-space distribution will be triggered. This
test case emphasizes the cost of dynamic control components (such as the dynamic data
expansion management and the dynamic context evaluation, etc.) in the implementation
of the dynamic key-space. The huge number of particles in this testing case will stress
these components in the implementation.

Three combustor meshes consisting of approximately two, eight, and fifteen million
cells are used. The same setting is run for both of the manual particle code and the newly
developed KVR particle program. For the second test case, the I/O cost in reading in the

existing restart particles are not included in the measurement, nor is the Loci scheduling
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cost for the static fluid field solver measured in all of cases. A total of 100 simulated steps

are timed for both codes on a diskless Linux cluster with SUSE Linux Enterprise Server 9.

The cluster is composed of 512 Sun Microsystems SunFire X2200 M2 servers, each with

two dual-core AMD Opteron 2218 processors (2.6GHz) and 8GB of memory. The system

is interconnected using Gigabit Ethernet. Up to 32 nodes (128 processors) are used on the

system for the measurements.

Performance Under Rapid Particle Injection (2M Mesh)

Table 7.3

init particle number = (

code \ 8p* \ 16p \ 32p \ 64p \ 128p
manual® | 1785.4° | 973.5 | 538.5 | 355.3 | 234.0
kvrd 1816.0 | 1008.6 | 579.5 | 401.0 | 343.6
diff (%) | +1.7 +3.6 | +7.6 | +12.9 | +46.8

“Parallel process number.

’Denotes the manual dual-dec Lagrangian particle tracking code.

“Result unit is second.

4Denotes the KyR dual-dec code.

“Denotes the timing difference of the KR code relative to the manual code.

Tables (7.3 — 7.5) show the timing results for the rapid particle injection testing case.

The new KyR particle code is slower than the manual particle code. This is usually to

be expected as layers of abstraction usually add costs. The timing results suggest in most

cases, the difference is not significant. There are some indication that under large number

of processes, the KyR code produces more overhead (as percentage in the overall time)
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Table 7.4

Performance Under Rapid Particle Injection (8M Mesh)

init particle number = (
code | 32p | 64p | 128p
manual | 1759.7 | 1018.5 | 643.8
kvr 1861.6 | 1099.3 | 768.4
diff (%) | +5.8 +7.9 | +19.4

Table 7.5

Performance Under Rapid Particle Injection (15M Mesh)

init particle number = (
code | 64p | 128p
manual | 1643.0 | 952.6
kvr 1739.4 | 1098.7
diff (%) | +5.9 | +15.3

Table 7.6

Performance Under Stable Large Particle Number (2M Mesh)

particle number = 12M
code | 8p | 16p | 32p | 64p | 128p
manual | 3429.5 | 1769.1 | 935.8 | 513.3 | 302.5
kvr 3874.3 | 2017.9 | 1095.0 | 623.1 | 394.2
diff (%) | +13.0 | +14.1 | +17.0 | +21.4 | +30.3
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Table 7.7

Performance Under Stable Large Particle Number (8M Mesh)

particle number = 12M
code | 32p | 64p [ 128p
manual | 2657.0 | 1409.1 | 838.7
kvr 3109.2 | 1694.1 | 1044.8
diff (%) | +17.0 | +20.2 | +24.6

as in smaller number of processes. Following paragraphs will discuss this issue further.
Tables (7.6 — 7.8) show the timing results for the stable large particle number testing case
with no particle injection. These tests more accurately reflect the dynamic control compo-
nents and key-set manipulation costs in the dynamic key-space implementation. The KyR
particle code has in general more overhead under this testing case than in the first injection
testing scenario. This in part is due to that the fluid solver takes more percentage of timing
in the injection testing case, thus suppressing the particle component cost somewhat. On
the other hand, this also suggests that the overhead of the dynamic key-space can grow
larger with the number of particles.

Tables (7.3 — 7.8) gave the overall performance measurements. The results reflect the
combined effects of the all the participating components in the program. The interactions
of these different parts can be rather complicated and can cause unpredictable performance
effects. In order to understand more clearly the fundamental cost in the present dynamic
key-space implementation, we can identify the major steps that lead to overhead and mea-
sure their cost individually. Given that the KyR code is synthesized according to the basic

strategies outlined in Algorithm 7.1 and the rest of the implementation sections, we can
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Table 7.8

Performance Under Stable Large Particle Number (15M Mesh)

particle number = 12M

code | 64p | 128p
manual | 2221.8 | 1370.6

kvr 2607.1 | 1635.6
diff (%) | +17.3 | +19.3

Table 7.9

Overhead of Dynamic Key-space (2M Mesh, Rapid Particle Injection)

| mode | 8p | 16p | 32p | 64p | 128p ||
theory* | 6.7 | 5.5 | 5.4 | 7.0 | 12.2
actual® | 30.6 | 35.1 | 41 | 45.7 | 109.6

“Denotes measurements of cost of the essential operations that are not in the manual code.

bDenotes the actual cost difference between the manual and KVR codes shown in Tables (7.3 — 7.8).

Table 7.10

Overhead of Dynamic Key-space (8M Mesh, Rapid Particle Injection)

| code | 32p | 64p | 128p ||
theory | 5.3 6.8 | 13.0
actual | 101.9 | 80.8 | 124.6

Table 7.11

Overhead of Dynamic Key-space (15M Mesh, Rapid Particle Injection)

| code | 64p | 128p ||

theory | 6.9 | 11.8
actual | 96.4 | 146.1
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Table 7.12

Overhead of Dynamic Key-space (2M Mesh, Stable Large Particle Number)

| mode | 8p | 16p | 32p | 64p | 128p |
theory | 256.9 | 138.4 | 66.7 | 33.5 | 17.7
actual | 444.8 | 248.8 | 159.2 | 109.8 | 91.7

Table 7.13

Overhead of Dynamic Key-space (8M Mesh, Stable Large Particle Number)

| code | 32p | 64p | 128p ||
theory | 114.8 | 51.2 | 33.6
actual | 452.2 | 285.0 | 206.1

Table 7.14

Overhead of Dynamic Key-space (15M Mesh, Stable Large Particle Number)

| code | 64p | 128p ||

theory | 75.7 | 57.3
actual | 385.3 | 265.0
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indeed conclude that the steps involve key-set manipulation are missing from the manual
code. They are mainly the steps that determine the context of each rule (such as that in
line 3), and the steps to compute the key distribution that precedes the key-space topology
evaluation. The manual code does not use the concept of “key” for the particles, hence
it does not need to determine these information at the run-time. In this regard, it can be
considered that the major overhead of the KyR model is its use of the key concept. In
addition, since the current dynamic key-space uses the trie data structure, its run-time per-
formance loss from data access to the tries is also an overhead that is not presented in the
manual code.

Tables (7.9 — 7.14) show the measurements of such three individual components in the
KVR code. The “theory” row in the tables represent the sum of the cost in the rule context
evaluation step, key distribution step, and the performance loss from the trie data structures
in the KyR particle code. This cost represent the currently unavoidable overhead in the
dynamic key-space implementation. The “actual” row in Tables (7.9 — 7.14) is the actual
timing difference between the manual and the KyR particle code taken from the previous
results in Tables (7.3 — 7.8). These results show that the theoretically unavoidable costs
in the KyR code is actually quite small. There is a large gap between the cost of these
unavoidable components and the actually measured cost difference. We can notice that
such a gap increases significantly in the injection cases (Tables (7.9 —7.11)) as the process
number increases, particularly under the 128-process cases. This indicate that there must
be other sources of overhead. Either there are numerous of such overhead sources, or that

a few significant overhead are overlooked.

142

www.manaraa.com



Table 7.15

Actual Data Distribution Cost (2M Mesh, Rapid Particle Injection)

manual: 1 dist. kvr: 24 dist.
code | 8p | 16p | 32p | 64p | 128p
manual | 7.5 | 6.9 | 6.9 | 83 | 11.0
kvr 11.5 | 14.0 | 15.9 | 20.8 | 70.3

Table 7.16

Actual Data Distribution Cost (8M Mesh, Rapid Particle Injection)

manual: 1 dist. kvr: 24 dist.
code | 32p | 64p | 128p
manual | 7.3 | 81 | 11.1
kvr 16.7 | 20.5 | 73.8

Table 7.17

Actual Data Distribution Cost (15M Mesh, Rapid Particle Injection)

manual: 1 dist. kvr: 24 dist.
code | 64p | 128p

manual 8.1 11.7
kvr 20.1 72.8
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Tables (7.15 — 7.17) are measures for the actual cost of data redistribution in the man-
ual and KyR code for the injection testing case. In the manual code, since all particles
and their related data are stored in a list, there is only one data structure to redistribute.
In the KVR code, the design emphasizes the program composition and in turn, all parti-
cle related data are scattered in different data structures. In this case, there are 24 data
structures for the particle related information in the KyR code. The total data volume in
both codes should be equal in theory, although in reality the KR code could have a larger
data volume due to the use of several additional copies and control variables. When re-
distributing data, the KyR code does not combine all these 24 structures, instead, they are
communicated one by one. Combining them together has the effects of reducing the paral-
lel communication start-up costs. However careful analysis is needed in order to combine
structures with different domains. It is a future research work to determine whether an
effective analysis can be found and its cost trade-off. With this setting, the KvVR code per-
forms significantly more communication steps in the data redistribution than the manual
code. In the present dynamic key-space implementation, distribution of one data structure
is guaranteed to incur two MPI collective calls. The following communication steps use
point to point MPI calls and the actual number thus varies. With a rough estimation, the
KVR code should have an order of magnitude more MPI calls in the data distribution step
than that in the manual code.

The results in Tables (7.15 — 7.17) show that on process number up to 64, the actual
cost difference between the two code is not significant. The amount of slowdown of the

KVR code data distribution is expected due to its larger data volume and an order of mag-
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nitude more MPI calls. However on 128 process, the gap becomes much larger. The exact
reason is not yet determined. The current best explanation is that this is affected by the
particular hardware setup. On the Linux cluster that the experiments were performed, 128
processors are grouped in a single rack. Faster network interconnections are used within
a rack and lower performance interconnections are used between the racks. Therefore if
communicating processes are in different racks, then the performance may be much worse
than if they were in the same rack. The exact process-rack mapping is not possible to
determine in the current system. However the cluster node allocation can be obtained and
indeed the 128-processor request was allocated from processors on different racks. Since
a full 128-process run will use all the available processors, then at least the 128-process
testing cases involve inter-rack communication. Since the KyR code has much more MPI
calls, it may become more susceptible to inter-rack communication performance drop.
This could be one explanation for the large performance gap observed in the 128-process
run. However, it is not clear if inter-rack communication is involved in other smaller pro-
cess number cases. Also the amount of inter-rack communication may affect the final
performance. Thus even if the 64-process run involves small amount of inter-rack process

communication, the performance degradation may not be severe enough to be noticeable.

Table 7.18

Fluid Solver Comm. Timing (2M Mesh, Rapid Particle Injection)

| code | 8p | 16p | 32p | 64p | 128p |
manual | 143.5 | 110.5 | 80.4 | 78.9 | 66.3
kvr 116.6 | 161.2 | 115.2 | 122.8 | 96.1
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Table 7.19

Fluid Solver Comm. Timing (8M Mesh, Rapid Particle Injection)

| code | 32p | 64p | 128p |
manual | 269.2 | 232.0 | 138.5
kvr [ 321.6 | 310.1 [ 191.7

Table 7.20

Fluid Solver Comm. Timing (15M Mesh, Rapid Particle Injection)

| code | 64p | 128p |

manual | 168.2 | 249.9
kvr 179.2 | 299.0

There is another suspected major source of overhead in the KyR code. It is observed
that the MPI calls in the KR code are much less synchronized than those in the manual
code. This may be caused by an imbalance at one point in the code, and it is possible
that this can lead to a chain reaction that causes multiple synchronization problems in
the MPI calls. The overall effects of such asynchronism is that the wall time is slowed
down since it is determined by the slowest process. The extent of this problem is hard
to measure exactly. However there are evidence that it is responsible for a large portion
of the theory and actual performance gap shown in Tables (7.9 — 7.14). Tables (7.18 —
7.23) show the measurements of the parallel communication time in the fluid solver for

both the manual and the KyR codes. The fluid flow solver used in these two codes is the
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Table 7.21

Fluid Solver Comm. Timing (2M Mesh, Stable Large Particle Number)

| code | 8p | 16p | 32p | 64p | 128p ||
manual | 66.6 | 107.9 | 77.4 | 60.3 | 59.0
kvr 76.2 | 120.3 | 89.1 | 83.7 | 86.0

Table 7.22

Fluid Solver Comm. Timing (8M Mesh, Stable Large Particle Number)

| code | 32p | 64p | 128p ||
manual | 279.5 | 209.9 | 131.5
kvr 288.6 | 249.5 | 171.9

Table 7.23

Fluid Solver Comm. Timing (15M Mesh, Stable Large Particle Number)

| code [ 64p | 128p ||

manual | 188.4 | 261.7
kvr 221.9 | 284.2
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same and ideally the timing results would be identical. However the actual measurements
suggest that the fluid solver spent more time on parallel communication in the KyR code
than in the manual code. This is a good indication that the communication routines in
the KR code are less synchronized. The only difference in the fluid flow solver in the
manual and KVR particle codes is the scheduling order of rules. Since the particle part in
the manual and the KyR codes are implemented differently, the overall scheduling order
in the two codes are different. This can contribute to the increased cost in the fluid flow
solver communication routines in the KyR code. There is also evidence that the particle
communication routines in the KyR code have similar synchronization problem. This
appears to be practically a major performance overhead in the KyR code. The consistent
slowdown in the fluid flow solver communication time within the KyR code also suggests
that the particle components in the KR code are less balanced than the ones in the manual
code. Although the reverse case is also possible, i.e., the fluid flow solver is causing the
synchronization problem. Because the manual code has only one central particle list data
structure, it is less susceptible to this effects. Identifying the exact cause of this problem
can be hard. However its practical effects will be important. A careful research work is
needed to identify the cause of the problem.

The performance analysis suggest that the present dynamic key-space implementation
typically incur a 20% or less performance penalty compared to a highly tuned manual
code. Whether this is an acceptable threshold depends on the individual problem and the
practical needs. There are however several ways to further improve the dynamic key-

space implementation. The measurements show that the essential unavoidable costs in
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the dynamic key-space implementation are modest. The largest of the unavoidable costs
is perhaps the dynamic rule context evaluation. It is an essential part in the KyyR model
and is not avoidable. Its cost is proportional to the number of keys involved. The manual
particle code does not have this cost since the context in the code is implicitly assumed to
be all existing particles. However for programs involve multiple components, the effective
computational bounds for each function may also need to computed in a manual code.
Therefore a manual program may also have such cost involved. Although in practice, a
manual program may choose to use inexact bounds in order to simplify the logic and the
amount of computations involved. If we allow annotation in the dynamic key-space to
indicate the proper context for each rule, then this cost can be avoided. However in doing
so, the present Loci framework loses one of its biggest advantages. In fact, the name of
Loci is a reference to the capability of discovering the context for each rule. However
adding this annotation may not be a bad idea. First, the choice of using annotation is at the
user discretion. They can choose to not use such context annotation, then the system will
behave the same (and incur certain costs at run-time). However when in the case the users
can predict the rule context (as in the particle example), then they can simply annotate and
avoid the run-time cost. Moreover, one can choose to annotate certain rules with context
while leaving others to the system to determine. Also even if a rule is annotated with a
context, the system may ignore it and opt for determining the context on its own. This can
in effect to be used to perform a “bounds check” similar to array access implemented in

some languages. If the system discovers that the automatically determined context does
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not match the annotation, it can then issue proper warning. This is in fact a promising
direction and is worth to be considered in the future work.

Another possible improvement is to find alternatives for the trie data structure. The
current performance measurement suggests that the overhead incurred by the trie structure
is small. This is however due to the mixture of computation with data access. In a program
with heavy memory access, the trie structure may become a major performance bottleneck,
although the chance for such a situation is small in numerical programs. One possible
alternative is to use arrays to replace the trie. Then there is a need to perform renumbering
on the keys accessible on each process. This situation is addressed in section 7.1.3 to
be undesirable for highly dynamic key-space as the management overhead easily exceeds
the data structure performance loss. Another alternative is to design smart containers for
parallel data access use. It is hard to predict what the final specification for such a design
would be. The goal is to design parallel container capable of managing sparse index with
low space and access cost. The other direction to consider is to design containers with
multiple views. For example, the manual particle code uses a linked list as the central
data structure. The advantage is that there is very little memory copies involved in the
manual code. In contrast, the KR particle code has more data copies involved due to the
data structure choice. This also contributes to the performance loss. The linked list lacks
random access capability. However in the manual code, such random access capability is
not needed, sequential access is enough to process all the particles in a list. One way to
reduce the trie structure access cost is to also design a sequential access mode for it. The

difficulty is to determine an access plan if the given index set is not contiguous. Another
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way is to perform a global analysis to the program and convert any of the trie data structure
to a list when random access is not required. Whether these strategies are effective needs
to be evaluated practically.

The measurements also suggest that some of the “accidental” events actually dominate
most of the current performance loss, such as the present data distribution routine is sus-
ceptible to low performance network and that the parallel process is less synchronized in
the KyR code resulting in an increase in the turnaround time. Future research will need

to address these questions.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

The study presented in this dissertation seeks to improve the development process for
computational field simulation software, with a focus on modeling the essential compo-
nents in CFS problems with a dynamic nature, such as those often exhibited by many
multiphase flow simulation problems. The “key-value-ref” model is examined in detail
and the “key-space” concept and its associated programming interface is developed as
a new addition to the model. It is shown in this dissertation that the critical structures
that distinguish the various CFS program formulation approaches can be modeled by the
“key-value-ref” model with the key-space concept.

The benefit of such a model is two-fold. First, the newly developed programming in-
terface clearly removes much of the accidental complexity in developing portable parallel
CFS programs on modern distributed memory platform. Much of the resource manage-
ment burden is removed as is clearly shown by the example source codes. More impor-
tantly, the model developed in this dissertation addresses several questions in the initial
software design process where the most important decisions are often made. In essence,
the model advocates a view where an object can choose to either initiate a computation or
receive a computation, and that the computations are grouped by similar objects that initi-

ate computations. Different object roles and grouping strategies result in different design
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approaches that naturally correspond to the various parallel formulations of CFS problems
that are widely considered standard. This model view also recognizes the essential perfor-
mance cost trade-off in different design approaches by categorizing different groupings as
static or dynamic, and it also proposes guidelines (e.g., as in Proposition 5.7) to craft a de-
sign that is likely to be able to yield reasonable performance. However one must note that
the model itself does not solve problems, nor does it magically remove any fundamental
performance cost in the resulting parallel program. The fundamental performance cost is,
after all, fundamental. The model only exposes the trade-off in a more sensible way and
offers suggestions to limit their scope so that fundamental decisions in the software are
more easily made. The ultimate solution is certainly to be formulated by a designer.

In a short summary, there are several major contributions that this dissertation makes
to the current body of knowledge regarding parallel high-performance computing research
and portable parallel software development in general. First, it provides a comprehensive
investigation of two competing parallelization strategies for the parallel Lagrangian dis-
persed multiphase flow problem. This investigation shows that a little used methodology
has great potential to deliver reliable and automatic parallel performance, particularly on
parallel computing hardware with low-latency and high-bandwidth networks. The second
contribution is the design and implementation of the key-space concept in the key-value-
ref model. It is shown that this new model allows for a compact representation of the paral-
lel Lagrangian dispersed multiphase flow problem and is able to reveal the critical factors
in the design of these classes of problems. It is also shown that the resulting programming

system provides a significant reduction in the complexity of the implementation of these
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algorithms and facilitates significant automation in the development of parallel software
for this important class of problems.

The performance study of the current model implementation shows that there is a
marginal cost (around 20% for larger problem, and less for smaller problem) compared
to a highly optimized program designed in manual. The performance evaluation also sug-
gests that the fundamental cost in the model under the current understanding is much
smaller. Future work needs to investigate the specific cause of these non-essential perfor-
mance drops and find solutions for improvements. However we should also note that the
manual implementation used in the performance comparison is a much more specialized
design that sacrifices the design flexibility in order to obtain performance. Much of the
cost in the current model implementation comes from the cost associated with its great
composability and guaranteed consistency. If a manually designed program were also to
address these issues, then it is likely to incur similar costs. However one can easily choose
the desirable levels of design within the current model and its programming interface. For
example, should the absolute performance outweigh the software engineering benefits,
then the model’s cost can be greatly reduced by using appropriate annotations and a so-
phisticated design. Thus in this regard, the model and its implementation can be thought
of as providing a large design space at a relatively low cost.

Regarding the model itself, perhaps the most needed follow-up research work is to
investigate whether or not the key-space concept is able to provide essential insights to
other dynamic CFS problems such as simulations with adaptive mesh refinement. With

the key-space concept and the model in the current form, such applications can certainly
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be described. A possible solution is to define a single dynamic key-space whose topology
is linked to the refinement process. Then after the mesh if refined, the key-space topology
will be automatically reevaluated and the entire program is rescheduled. However such a
formulation can possibly incur large overhead. The essence of the current model is to en-
courage a design where many key-spaces interact. This design approach is more promising
to limit the fundamental performance cost within a small region in a program, thus help
improving the entire program performance. New semantics in the model such as key-space
split, merge, and the conversion between dynamic and static key-spaces may need to be
explored to support more design choices and also to provide further insights. With these
developments, it is possible to evolve the model into a fundamental way of describing nu-
merical computation similar to the role of the object-oriented model in describing common

computational problems.
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